• UVa 10131 Is Bigger Smarter? (LDS+数据结构排序)


    Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

    Status

    Description

    Download as PDF

    Question 1: Is Bigger Smarter?

    The Problem

    Some people think that the bigger an elephant is, the smarter it is. To disprove this, you want to take the data on a collection of elephants and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the IQ's are decreasing.

    The input will consist of data for a bunch of elephants, one elephant per line, terminated by the end-of-file. The data for a particular elephant will consist of a pair of integers: the first representing its size in kilograms and the second representing its IQ in hundredths of IQ points. Both integers are between 1 and 10000. The data will contain information for at most 1000 elephants. Two elephants may have the same weight, the same IQ, or even the same weight and IQ.

    Say that the numbers on the i-th data line are W[i] and S[i]. Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing an elephant). If these n integers are a[1], a[2],..., a[n] then it must be the case that

       W[a[1]] < W[a[2]] < ... < W[a[n]]
    
    and
       S[a[1]] > S[a[2]] > ... > S[a[n]]
    
    In order for the answer to be correct, n should be as large as possible. All inequalities are strict: weights must be strictly increasing, and IQs must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.

    Sample Input

    6008 1300
    6000 2100
    500 2000
    1000 4000
    1100 3000
    6000 2000
    8000 1400
    6000 1200
    2000 1900
    

    Sample Output

    4
    4
    5
    9
    7

    题意:大象真的越大越聪明吗,找出体重递增IQ递减的最长大象序列。

    分析:很明显的最长递降子序列,先把体重排序,体重一样的按iq递减排,这样就能出来了。

     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 //antiew[i]为编号i个大象的体重排名; ew是体重第i名的大象的编号;w,s是大象的体重,智商;
     5 int w[1005],s[1005],n=0,ew[1005],antiew[1005],loest[1005],p[1005];
     6 //int f[1005][1005];
     7 int cmp(const void* x,const void* y)
     8 {
     9     if(  w[*(int*)x] != w[*(int*)y]  )
    10         return w[*(int*)x] - w[*(int*)y];
    11     else
    12         return s[*(int*)y] - s[*(int*)x] ;
    13 }
    14 
    15 void print(int i)
    16 {
    17     if(i == -1) return;
    18     print(p[i]);
    19     printf("%d
    ",ew[i] + 1);
    20     //printf("%d : %d   %d
    ",ew[i] + 1,w[ew[i]],s[ew[i]]);
    21 }
    22 
    23 int main()
    24 {
    25     #ifdef LOCAL
    26     freopen("..\data.in","r",stdin);
    27     #endif // LOCAL
    28     //读入大象的体重w  智商s  共n头大象
    29     while(scanf("%d%d",w+n,s+n) == 2)
    30         n++;
    31     //ew是大象体重增加的
    32     for(int i=0;i<n;i++)
    33         ew[i] = i;
    34     qsort(ew,n,sizeof(int),cmp);
    35     for(int i=0;i<n;i++)
    36         antiew[ew[i]] = i;
    37     memset(p,-1,sizeof(p));
    38     memset(loest,0,sizeof(loest));
    39 
    40     loest[0] = 1;
    41     for(int i=1;i<n;i++)
    42     {
    43         //maxl是前i个的大象IQ的严格下降降子序列长度的最大值
    44         int maxl=0;
    45         for(int j=i-1;j>=0;j--) if( s[ew[i]] < s[ew[j]] && w[ew[i]] > w[ew[j]] && maxl < loest[j] )
    46         {
    47             maxl = loest[j];
    48             p[i] = j;
    49         }
    50         if(p[i] == -1)
    51             loest[i] = 1;
    52         else
    53             loest[i] = maxl + 1;
    54     }
    55 
    56     int maxip=0;
    57     for(int i=0;i<n;i++) if(loest[maxip] < loest[i])
    58         maxip = i;
    59     printf("%d
    ",loest[maxip]);
    60 
    61     print(maxip);
    62     /*
    63     for(int i=0;i<n;i++)
    64         printf("编号:%4d  体重:%4d   智商:%4d  体重排名:%4d
    ",i + 1,w[i],s[i],antiew[i]+1);
    65     for(int i=0;i<n;i++)
    66         printf("体重排名:%4d  体重:%4d   智商:%4d  编号:%4d
    ",i+1,w[ew[i]],s[ew[i]],ew[i]+1);
    67     */
    68     return 0;
    69 }
  • 相关阅读:
    maven常用命令
    项目管理需要做的事情
    jinkins 部署过程
    怎么操作会导致MySQL锁表
    高性能Java代码的规范
    java8新特性(2)--接口的默认方法
    java8新特性1--Lambda表达式
    eclipse web项目
    js 0 "" null undefined
    Android分页加载
  • 原文地址:https://www.cnblogs.com/caterpillarofharvard/p/4244600.html
Copyright © 2020-2023  润新知