• Pandas 基本技巧


    1.数据查看和转置

    import numpy as np
    import pandas as pd  
    # 导入numpy、pandas模块
    
    # 数据查看、转置
    
    df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,
                       columns = ['a','b'])
    print(df.head(2))  #查看前两条数据
    print(df.tail())
    # .head()查看头部数据
    # .tail()查看尾部数据
    # 默认查看5条
    
    print(df.T)
    # .T 转置

    输出结果:

               a          b
    0  64.231620  24.222954
    1   3.004779  92.549576
               a          b
    3  54.787062  17.264577
    4  13.106864   5.500618
    5   8.631310  79.109355
    6  22.107241  94.901685
    7  29.034599  54.156278
               0          1          2          3          4          5  
    a  64.231620   3.004779  25.002825  54.787062  13.106864   8.631310   
    b  24.222954  92.549576  87.818090  17.264577   5.500618  79.109355   
    
               6          7  
    a  22.107241  29.034599  
    b  94.901685  54.156278  

    2.(1)添加与修改_1

    # 添加与修改
    
    df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                       columns = ['a','b','c','d'])
    print(df)
    
    df['e'] = 10
    df.loc[4] = 20
    print(df)
    # 新增列/行并赋值
    
    df['e'] = 20
    df[['a','c']] = 100
    print(df)
    # 索引后直接修改值
    
    #注意:不能同时添加两列,否则会报错,如:df[['f','g']] = 200 ,必须一列一列的添加

    输出结果:

               a          b          c          d
    0  14.342082  52.604100  26.561995  60.441731
    1  20.331108  43.537490   1.020098   7.171418
    2  35.226542   9.573718  99.273254   0.867227
    3  47.511549  56.783730  47.580639  67.007725
               a          b          c          d   e
    0  14.342082  52.604100  26.561995  60.441731  10
    1  20.331108  43.537490   1.020098   7.171418  10
    2  35.226542   9.573718  99.273254   0.867227  10
    3  47.511549  56.783730  47.580639  67.007725  10
    4  20.000000  20.000000  20.000000  20.000000  20
         a          b    c          d   e
    0  100  52.604100  100  60.441731  20
    1  100  43.537490  100   7.171418  20
    2  100   9.573718  100   0.867227  20
    3  100  56.783730  100  67.007725  20
    4  100  20.000000  100  20.000000  20

    (2)添加与修改_2

    import numpy as np
    import pandas as pd
    
    df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                       columns = ['a','b','c','d'])
    df.iloc[0] = 100
    print(df)
    df.iloc[0] = [1,2,3,4]
    print(df)
    
    #增加一行尽量曲用loc去增加,iloc是不能增加的,会报错
    df.loc[5] = 100
    print(df)

    输出结果:

                a           b           c           d
    0  100.000000  100.000000  100.000000  100.000000
    1   93.941010    7.951216   77.744847   66.842114
    2   72.795874   40.031626   22.842638   92.876458
    3   40.474858   53.663771   48.452597   66.444382
               a          b          c          d
    0   1.000000   2.000000   3.000000   4.000000
    1  93.941010   7.951216  77.744847  66.842114
    2  72.795874  40.031626  22.842638  92.876458
    3  40.474858  53.663771  48.452597  66.444382
                a           b           c           d
    0    1.000000    2.000000    3.000000    4.000000
    1   93.941010    7.951216   77.744847   66.842114
    2   72.795874   40.031626   22.842638   92.876458
    3   40.474858   53.663771   48.452597   66.444382
    5  100.000000  100.000000  100.000000  100.000000

    3.删除

    (1)

    # 删除  del / drop()
    
    df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                       columns = ['a','b','c','d'])
    print(df)
    
    del df['a']
    print(df)
    print('-----')
    # del语句 - 删除列
    #注意:删除行的时候不能用del df.loc[index]或者df.iloc[index]  否则会报错 可以变相的删除 如删除第一行 可令df = df.iloc[1:]
    
    print(df.drop(0))
    print(df.drop([1,2]))
    print(df)
    print('-----')
    # drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据
    
    print(df.drop(['d'], axis = 1)) #axis =0 的时候删除行
    print(df)
    # drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据

    输出结果:

               a          b          c          d
    0  71.238538   6.121303  77.988034  44.047009
    1  34.018365  78.192855  50.467246  81.162337
    2  86.311980  44.341469  49.789445  35.657665
    3  78.073272  31.457479  74.385014  24.655976
               b          c          d
    0   6.121303  77.988034  44.047009
    1  78.192855  50.467246  81.162337
    2  44.341469  49.789445  35.657665
    3  31.457479  74.385014  24.655976
    -----
               b          c          d
    1  78.192855  50.467246  81.162337
    2  44.341469  49.789445  35.657665
    3  31.457479  74.385014  24.655976
               b          c          d
    0   6.121303  77.988034  44.047009
    3  31.457479  74.385014  24.655976
               b          c          d
    0   6.121303  77.988034  44.047009
    1  78.192855  50.467246  81.162337
    2  44.341469  49.789445  35.657665
    3  31.457479  74.385014  24.655976
    -----
               b          c
    0   6.121303  77.988034
    1  78.192855  50.467246
    2  44.341469  49.789445
    3  31.457479  74.385014
               b          c          d
    0   6.121303  77.988034  44.047009
    1  78.192855  50.467246  81.162337
    2  44.341469  49.789445  35.657665
    3  31.457479  74.385014  24.655976

    (2)

    import numpy as np
    import pandas as pd
    
    df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                       columns = ['a','b','c','d'])
    print(df.drop(0)) 
    print(df)  #源数据不会改变
    
    print(df.drop(0,inplace = True))  #这个方法改变了源数据,并不生成新的值了,所以输出为空
    print(df)  #有inplace 参数的时候就替换了源数据

    输出结果:

               a          b          c          d
    1  78.187118  19.237655  94.443127  67.466532
    2  37.921956  84.157197  23.311418  24.128222
    3  12.330334   6.034799  62.023747  28.034041
               a          b          c          d
    0  60.558857  94.367826  88.690379  33.957380
    1  78.187118  19.237655  94.443127  67.466532
    2  37.921956  84.157197  23.311418  24.128222
    3  12.330334   6.034799  62.023747  28.034041
    None
               a          b          c          d
    1  78.187118  19.237655  94.443127  67.466532
    2  37.921956  84.157197  23.311418  24.128222
    3  12.330334   6.034799  62.023747  28.034041

    4.对齐

    # 对齐
    
    df1 = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
    df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
    print(df1)
    print(df2)
    print(df1 + df2) #有共同的列名和共同的标签的话 就会相加 。没有共同的部分就会变为空值。任何值和空值进行运算都会变为空值
    # DataFrame对象之间的数据自动按照列和索引(行标签)对齐 ,

    输出结果:

       A         B         C         D
    0 -1.528903  0.519125 -0.214881 -0.591775
    1 -0.334501 -0.837666  0.568927 -0.599237
    2  0.753145  0.569262 -1.181976  1.225363
    3 -0.177136 -0.367530  0.382826  1.447591
    4  0.215967 -0.612947  0.844906  0.130414
    5  0.414375 -0.207225  0.140776  1.086686
    6  0.008855  2.873956 -0.650806 -2.631485
    7 -0.634085  0.625107  0.046198 -0.352343
    8  0.646812  0.928476  0.519168 -0.644997
    9 -0.697006 -0.178875  0.856392 -0.512101
              A         B         C
    0 -0.373297  0.607873  0.120016
    1  0.343563 -2.901778 -0.370051
    2  0.428568  0.319359 -3.263585
    3  1.042845 -0.314763 -0.198816
    4  0.071258 -0.484855  0.563127
    5 -2.270312 -0.145558  0.931203
    6  2.493652 -0.232491 -0.216451
              A         B         C   D
    0 -1.902200  1.126998 -0.094865 NaN
    1  0.009061 -3.739444  0.198876 NaN
    2  1.181713  0.888620 -4.445561 NaN
    3  0.865710 -0.682293  0.184010 NaN
    4  0.287224 -1.097802  1.408034 NaN
    5 -1.855938 -0.352783  1.071979 NaN
    6  2.502507  2.641465 -0.867257 NaN
    7       NaN       NaN       NaN NaN
    8       NaN       NaN       NaN NaN
    9       NaN       NaN       NaN NaN

    6.排序

    (1)按值排序

    # 排序1 - 按值排序 .sort_values
    # 同样适用于Series
    
    df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                       columns = ['a','b','c','d'])
    print(df1)
    print(df1.sort_values(['a'], ascending = True))  # 升序
    #也可以这样写:print(df1.sort_values(by = 'a',ascending = True))
    print(df1.sort_values(['a'], ascending = False))  # 降序
    print('------')
    # ascending参数:设置升序降序,默认升序
    # 单列排序
    
    df2 = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
                      'b':list(range(8)),
                      'c':list(range(8,0,-1))})
    print(df2)
    print(df2.sort_values(['a','c']))
    # 多列排序,按列顺序排序
    # 注意inplace参数

    输出结果:

        a          b          c          d
    0  28.598118   8.037050  51.856085  45.859414
    1  91.412263  59.797819  27.912198   6.996883
    2  92.001255  76.467245  76.524894  33.463836
    3  47.054750  37.376781  94.286800  53.429360
               a          b          c          d
    0  28.598118   8.037050  51.856085  45.859414
    3  47.054750  37.376781  94.286800  53.429360
    1  91.412263  59.797819  27.912198   6.996883
    2  92.001255  76.467245  76.524894  33.463836
               a          b          c          d
    2  92.001255  76.467245  76.524894  33.463836
    1  91.412263  59.797819  27.912198   6.996883
    3  47.054750  37.376781  94.286800  53.429360
    0  28.598118   8.037050  51.856085  45.859414
    ------
       a  b  c
    0  1  0  8
    1  1  1  7
    2  1  2  6
    3  1  3  5
    4  2  4  4
    5  2  5  3
    6  2  6  2
    7  2  7  1
       a  b  c
    3  1  3  5
    2  1  2  6
    1  1  1  7
    0  1  0  8
    7  2  7  1
    6  2  6  2
    5  2  5  3
    4  2  4  4

    (2)索引排序

    # 排序2 - 索引排序 .sort_index
    
    df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                      index = [5,4,3,2],
                       columns = ['a','b','c','d'])
    df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                      index = ['h','s','x','g'],
                       columns = ['a','b','c','d'])
    print(df1)
    print(df1.sort_index())
    print(df2)
    print(df2.sort_index())
    # 按照index排序
    # 默认 ascending=True, inplace=False

    输出结果:

           a          b          c          d
    5  80.932585  71.991854  64.582943  23.443231
    4  82.054030  87.459058  12.108433  83.047490
    3  56.329863  14.926822  47.884418  59.880352
    2   0.347007  69.794103  74.375345  12.736429
               a          b          c          d
    2   0.347007  69.794103  74.375345  12.736429
    3  56.329863  14.926822  47.884418  59.880352
    4  82.054030  87.459058  12.108433  83.047490
    5  80.932585  71.991854  64.582943  23.443231
               a          b          c          d
    h  53.041921  93.834097  13.423132  82.702020
    s   0.003814  75.721426  73.086606  20.597472
    x  32.678307  58.369155  70.487505  24.833117
    g  46.232889  19.365147   9.872537  98.246438
               a          b          c          d
    g  46.232889  19.365147   9.872537  98.246438
    h  53.041921  93.834097  13.423132  82.702020
    s   0.003814  75.721426  73.086606  20.597472
    x  32.678307  58.369155  70.487505  24.833117

    (3)

    df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                      index = [5,4,3,2],
                       columns = ['a','b','c','d'])
    print(df1)
    print(df1.sort_index())
    print(df1)  # df1并没有变
    
    print(df1.sort_index(inplace = True))
    print(df1)  # df1发生改变

    输出结果:

              a          b          c          d
    5  45.004735  23.449962  52.756124  60.237141
    4  74.945903  63.813663  29.937821  66.420415
    3  45.737208  82.376775  80.615108  40.479094
    2  41.743173  82.013411  83.372130  76.195150
               a          b          c          d
    2  41.743173  82.013411  83.372130  76.195150
    3  45.737208  82.376775  80.615108  40.479094
    4  74.945903  63.813663  29.937821  66.420415
    5  45.004735  23.449962  52.756124  60.237141
               a          b          c          d
    5  45.004735  23.449962  52.756124  60.237141
    4  74.945903  63.813663  29.937821  66.420415
    3  45.737208  82.376775  80.615108  40.479094
    2  41.743173  82.013411  83.372130  76.195150
    None
               a          b          c          d
    2  41.743173  82.013411  83.372130  76.195150
    3  45.737208  82.376775  80.615108  40.479094
    4  74.945903  63.813663  29.937821  66.420415
    5  45.004735  23.449962  52.756124  60.237141

    练习:

    作业1:创建一个3*3,值在0-100区间随机值的Dataframe(如图),分别按照index和第二列值大小,降序排序

    import numpy as np
    import pandas as pd
    #练习1
    # df = pd.DataFrame(np.random.rand(9).reshape(3,3)*100,
    #                   index=['a','b','c'],
    #                   columns=['v1','v2','v3'])
    # print(df)
    #
    # print(df.sort_index())
    # df.sort_values(by = 'v2',ascending= False,inplace = True)
    # print(df)

    作业2:创建一个5*2,值在0-100区间随机值的Dataframe(如图)df1,通过修改得到df2

    #练习2
    # df1 = pd.DataFrame(np.random.rand(10).reshape(5,2)*100,
    #                   index=['a','b','c','d','e'],
    #                   columns=['v1','v2'])
    # print(df1)
    # print(df1.drop(['e'],axis = 0).T)

    作业3:如图创建Series,并按照要求修改得到结果

    #练习3
    df2 = pd.Series(np.arange(10),index= ['a','b','c','d','e','f','g','h','i','j'])
    print(df2)
    df2.loc[['a','e','f']] = 100
    print(df2)
    #或者
    # df2.iloc[0] = 100
    # df2.iloc[3] = 100
    # df2.iloc[4] = 100
  • 相关阅读:
    C++ 类的多态一(virtual关键字--构造函数深刻理解)
    C++ 类的继承六(多继承的二义性--虚基类)
    C++ 类的继承五(类继承中的static关键字)
    C++ 类的继承四(类继承中的重名成员)
    C++ 类的继承三(继承中的构造与析构)
    C++ 类的继承二(赋值兼容性原则)
    C++ 类的继承一(访问控制)
    C++ 匿名对象产生场景
    WPF/ASP.NET:几个Prism中的术语
    Prism 5 + MEF中的ModuleCatalog.CreateFromXaml问题
  • 原文地址:https://www.cnblogs.com/carlber/p/9918208.html
Copyright © 2020-2023  润新知