• 朴素贝叶斯算法 python 实现


    转载自:https://github.com/apachecn/AiLearning/blob/master/docs/ml/4.%E6%9C%B4%E7%B4%A0%E8%B4%9D%E5%8F%B6%E6%96%AF.md 

    应用贝叶斯准则:

    应用贝叶斯准则

    使用上面这些定义,可以定义贝叶斯分类准则为:

    • 如果 P(c1|x, y) > P(c2|x, y), 那么属于类别 c1;
    • 如果 P(c2|x, y) > P(c1|x, y), 那么属于类别 c2.

    在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。我们可以观察文档中出现的词,并把每个词作为一个特征,而每个词的出现或者不出现作为该特征的值,这样得到的特征数目就会跟词汇表中的词的数目一样多。

    我们假设特征之间 相互独立 。所谓 独立(independence) 指的是统计意义上的独立,即一个特征或者单词出现的可能性与它和其他单词相邻没有关系,比如说,“我们”中的“我”和“们”出现的概率与这两个字相邻没有任何关系。这个假设正是朴素贝叶斯分类器中 朴素(naive) 一词的含义。朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

    Note: 朴素贝叶斯分类器通常有两种实现方式: 一种基于伯努利模型实现,一种基于多项式模型实现。这里采用前一种实现方式。该实现方式中并不考虑词在文档中出现的次数,只考虑出不出现,因此在这个意义上相当于假设词是等权重的。

    项目概述

    构建一个快速过滤器来屏蔽在线社区留言板上的侮辱性言论。如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。对此问题建立两个类别: 侮辱类和非侮辱类,使用 1 和 0 分别表示。 

    构建数据集

    def loadDataset():
        """
        创建数据集
        :return: 单词列表postingList, 所属类别classVec
        """ 
        postingList = [['my','dog','has','flea','problems','help','please'], 
                      ['maybe','not','take','him','to','dog','park','stupid'],
                      ['my','dalmation','is','so','cute','I','love','him'],
                      ['stop','posting','stupid','worhless','garbage'],
                      ['mr','licks','ate','my','steak','how','to','stop','him'],
                      ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 
        classVec = [0,1,0,1,0,1]
        return postingList,classVec
    

    从文本中构建词向量

    (1) 构建词表

    def createVocabList(dataSet):
        """
        获取所有单词的集合
        :param dataSet: 数据集
        :return: 所有单词的集合(即不含重复元素的单词列表)
        """
        vocabSet = set([])  #构建空集合
        for document in dataSet:
            # 操作符,用于求两个集合的并集
            vocabSet = vocabSet | set(document)
        return list(vocabSet)
    

    (2) 构建词向量

    def setOfWords2Vec(vocabList,inputSet):  #输入的是此表和要构建的文档
        """
        遍历查看该单词是否出现,出现该单词则将该单词置1
        :param vocabList: 所有单词集合列表
        :param inputSet: 输入数据集
        :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
        """
        # 创建一个和词汇表等长的向量,并将其元素都设置为0 
        returnVec = [0] * len(vocabList)
        #遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] = 1 
            else:
                print("the word: %s is not in my Vocabulary!" %word)
        return returnVec  
    

    (3)检查函数执行情况,检查词表,不出现重复单词,需要的话,可以对其进行排序。

    listPosts,listClasses = loadDataset()
    print("原始的训练数据集是:
    ",listPosts,'
    ')
    myVocabList = createVocabList(listPosts)
    print("根据此数据集构建的词表是:
    ",myVocabList,'
    ')
    

      输出结果:

    原始的训练数据集是:
     [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 
    ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worhless', 'garbage'],
    ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] 根据此数据集构建的词表是: ['posting', 'park', 'my', 'stop', 'worhless', 'I', 'buying', 'please', 'steak', 'mr', 'how', 'food', 'help', 'is',
    'problems', 'not', 'love', 'worthless', 'cute', 'ate', 'quit', 'has', 'him', 'dog', 'flea', 'maybe', 'to', 'take',
    'dalmation', 'stupid', 'licks', 'so', 'garbage']

    (4) 检查函数有效性。例如:myVocabList 中索引为 2 的元素是什么单词? 应该是是 help 。该单词在第一篇文档中出现了,现在检查一下看看它是否出现在第四篇文档中。
    print(setOfWords2Vec(myVocabList,listPosts[0]))
    print(setOfWords2Vec(myVocabList,listPosts[3]))
    

      输出结果:

    [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    [1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]

    训练算法:从词向量计算概率

    现在已经知道了一个词是否出现在一篇文档中,也知道该文档所属的类别。 接下来我们重写贝叶斯准则,将之前的 x, y 替换为 w. 粗体的 w 表示这是一个向量, 即它由多个值组成。在这个例子中,数值个数与词汇表中的词个数相同。

    重写贝叶斯准则

    我们使用上述公式,对每个类计算该值,然后比较这两个概率值的大小。

    问: 上述代码实现中,为什么没有计算P(w)?

    答:根据上述公式可知,我们右边的式子等同于左边的式子,由于对于每个ci,P(w)是固定的。并且我们只需要比较左边式子值的大小来决策分类,那么我们就可以简化为通过比较右边分子值得大小来做决策分类。

    首先可以通过类别 i (侮辱性留言或者非侮辱性留言)中的文档数除以总的文档数来计算概率 p(ci) 。接下来计算 p(w | ci) ,这里就要用到朴素贝叶斯假设。如果将 w 展开为一个个独立特征,那么就可以将上述概率写作 p(w0, w1, w2...wn | ci) 。这里假设所有词都互相独立,该假设也称作条件独立性假设(例如 A 和 B 两个人抛骰子,概率是互不影响的,也就是相互独立的,A 抛 2点的同时 B 抛 3 点的概率就是 1/6 * 1/6),它意味着可以使用 p(w0 | ci)p(w1 | ci)p(w2 | ci)...p(wn | ci) 来计算上述概率,这样就极大地简化了计算的过程。

    在利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算 p(w0|1) * p(w1|1) * p(w2|1)。如果其中一个概率值为 0,那么最后的乘积也为 0。为降低这种影响,可以将所有词的出现数初始化为 1,并将分母初始化为 2 (取1 或 2 的目的主要是为了保证分子和分母不为0,大家可以根据业务需求进行更改)。

    另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算乘积 p(w0|ci) * p(w1|ci) * p(w2|ci)... p(wn|ci) 时,由于大部分因子都非常小,所以程序会下溢出或者得到不正确的答案。(用 Python 尝试相乘许多很小的数,最后四舍五入后会得到 0)。一种解决办法是对乘积取自然对数。在代数中有 ln(a * b) = ln(a) + ln(b), 于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。

    1.4.1  朴素贝叶斯分类器训练函数

    def trainNB0(trainMatrix,trainCategory):
        """
        训练数据原版
        :param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
        :param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,
        其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
        :return:
        """
        #文件数
        numTrainDocs = len(trainMatrix)
        #单词数
        numWords = len(trainMatrix[0])
        # 侮辱性文件的出现概率,即trainCategory中所有的1的个数
        # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
        pAbusive = sum(trainCategory) / float(numTrainDocs) 
        # 构造单词出现次数列表
        p0Num = np.ones(numWords)
        p1Num = np.ones(numWords)
        
        #整个数据集单词出现次数的列表
        p0Denom = 2.0 
        p1Denom = 2.0
        for i in range(numTrainDocs):
            #是否是侮辱性的文件
            if trainCategory[i] == 1:
                #如果是侮辱性文件,对侮辱性文件的向量进行加和
                p1Num += trainMatrix[i]
                # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        # 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
        # 即 在1类别下,每个单词出现的概率 
        p1Vect = np.log(p1Num / p1Denom)
        # 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
        # 即 在0类别下,每个单词出现的概率
        p0Vect = np.log(p0Num / p0Denom)
        return p1Vect,p0Vect,pAbusive 

    1.4.2  朴素贝叶斯分类函数

    
    
    def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
        """
        使用算法:
            # 将乘法转换为加法
            乘法:P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn)
            加法:P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
        :param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量
        :param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
        :param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
        :param pClass1: 类别1,侮辱性文件的出现概率
        :return: 类别1 or 0
        """
        # 计算公式  log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
        # 大家可能会发现,上面的计算公式,没有除以贝叶斯准则的公式的分母,也就是 P(w) (P(w) 指的是此文档在所有的文档中出现的概率)就进行概率大小的比较了,
        # 因为 P(w) 针对的是包含侮辱和非侮辱的全部文档,所以 P(w) 是相同的。
        # 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。
        # 我的理解是:这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
        p1 = sum(vec2Classify*p1Vec) + np.log(pClass1)  # P(w|c1) * P(c1) ,即贝叶斯准则的分子 
        p0 = sum(vec2Classify*p0Vec) + np.log(1.0 - pClass1)  # P(w|c0) * P(c0) ,即贝叶斯准则的分子
        if p1 > p0:
            return 1 
        else:
            return 0 
    

    1.4.3  测试朴素贝叶斯算法

      

    def testingNB():
        """
        测试朴素贝叶斯算法
        """
        # 1. 加载数据集
        listPosts,listClasses = loadDataset()
        #2. 创建单词集合
        myVocabList = createVocabList(listPosts)
        #3.计算单词是否出现并创建数据矩阵
        trainMat = []
        for postinDoc in listPosts:
            trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
        #4.训练数据
        p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))
        #5.测试数据
        testEntry = ['love','my','dalmation']
        thisDoc = np.array(setOfWords2Vec(myVocabList,testEntry))
        print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
        testEntry = ['stupid', 'garbage']
        thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
        print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
    

     输出结果:

    ['love', 'my', 'dalmation'] classified as:  1
    ['stupid', 'garbage'] classified as:  0 

  • 相关阅读:
    不等式(一)-Markov与Chebyshev不等式
    决策树学习
    k-NN最近邻算法(k-nearest neighbors algorithm)
    梯度下降(Gradient Descent)数学原理分析与实例
    求解素数
    shell基础命令使用
    安装jenkins
    idea拉取git
    shell常用命令
    linux 安装jdk
  • 原文地址:https://www.cnblogs.com/carlber/p/11798127.html
Copyright © 2020-2023  润新知