题目链接:
http://codeforces.com/contest/1139/problem/D
题意:
在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时,停止加入,求序列的期望长度
数据范围:
$1 leq m leq 10^{9}$
分析:
定义$f[x$]为$gcd$等于$x$时把序列$gcd和$改变成1的期望长度,定义$G(x,y)$为$i$在1到$n$范围,满足$gcd(x,i)=y$,$i$的数量,得到以下公式:
$$f[i]=1+frac{sum_{d|i}f[d] imes G(i,d)}n,x=i$$
由于公式两边都有$f[i]$(因为$i|i$),所以对公式进行变换:
$$f[i]=1+frac{sum_{d|i,d<i}f[d] imes G(i,d)+f[i] imes G(i,i)}n,x=i$$
$$frac{n-G(i,i)}{n}cdot f[i]=1+frac{sum_{d|i,d<i}f[d] imes G(i,d)}n,x=i$$
$$f[i]=frac{n+sum_{d|i,d<i}f[d] imes G(i,d)}{n-G(i,i)},x=i$$
然后就是用莫比乌斯反演快速求出$G(x,y)$即可
$$G(x,y)=sum_{d|frac xy}mu(d)leftlfloorfrac{n}{d*y} ight floor$$
ac代码:
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=1e5+10; const int mod=1e9+7; ll f[maxn],n; int pri[maxn],mu[maxn],is[maxn],cnt; vector<int>ve[maxn]; int cal(int x,int y)//i 在 1-n gcd(x,i)=y; { int dd=x/y,res=0; for(int i=0;i<ve[dd].size();i++) { int p=ve[dd][i]; res=res+mu[p]*(n/y)/p; } return res; } ll qpow(ll x,ll y) { ll res=1,k=x; while(y) { if(y&1)res=res*k%mod; k=k*k%mod; y/=2; } return res; } int getu() { mu[1]=1; for(int i=2;i<=n;++i) { if(!is[i]) { pri[++cnt]=i; mu[i]=-1; } for(int j=1;j<=cnt&&i*pri[j]<=n;++j) { is[i*pri[j]]=1; if(i%pri[j]) mu[i*pri[j]]=-mu[i]; else { mu[i*pri[j]]=0; break; } } } } void init() { getu(); for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i)ve[j].push_back(i); } int main() { ll ans=0; scanf("%d",&n); init(); for(int i=1;i<=n;i++) { f[i]=n; for(int j=0;j<ve[i].size();j++) { int d=ve[i][j]; if(i==d)continue; f[i]=(f[i]+f[d]*cal(i,d)%mod)%mod; } f[i]=f[i]*qpow(n-cal(i,i),mod-2)%mod; ans=(ans+f[i])%mod; } printf("%d ",(ans*qpow(n,mod-2)%mod+1)%mod); return 0; }