• bzoj3456 城市规划


    传送门
    我们令(g(n))表示有n个点的无向图的个数,(f(n))表示有n个点的无向连通图个数。
    (g(n))比较好求,因为一共有(C_n^2)条边,每条边可以选或者不选,所以自然有(g(n) = 2^{C_n^2}).

    之后我们换一种方法,在节点1所在的联通块中有多少个节点,剩下的只需要随便连就可以了。那么就有(g(n) = sum_{i=1}^nC_{n-1}^{i-1}f(i)g(n-i))

    (g(n) = 2^{C_n^2})带进式子,两边再同时除以((n-1)!),得到:

    [frac{2^{C_n^2}}{(n-1)!} = sum_{i=1}^nfrac{f(i)}{(i-1)!}frac{2^{C_{n-i}^2}}{(n-i)!} ]

    这玩意可以看出来是卷积的形式,那么我们设:

    [F(x) = sum_{i=1}^inftyfrac{f(i)}{(i-1)}x^i ]

    [G(x) = sum_{i=0}^inftyfrac{2^{C_i^2}}{i!}x^i ]

    [H(x) = sum_{i=1}^inftyfrac{2^{C_i^2}}{(i-1)!} ]

    那么(H(x) = F(x)G(x)),在((mod x^{n+1}))意义下求出(G(x)^{-1}),那么(F(x) equiv G(x)^{-1}H(x) (mod x^{n+1}))即为答案。注意最后要乘上(fac[n-1]).

    注意不要像我一样犯智障错误……我对指数取模导致第一次只有65pts,但是可以对mod-1取模,因为模数是质数,而(a^{p-1} equiv 1(mod p)),对答案没有影响。

    #include<bits/stdc++.h>
    #define rep(i,a,n) for(int i = a;i <= n;i++)
    #define per(i,n,a) for(int i = n;i >= a;i--)
    #define enter putchar('
    ')
    #define fr friend inline
    #define y1 poj
    
    using namespace std;
    typedef long long ll;
    const int M = 800005;
    const int mod = 1004535809;
    const int G = 3;
    const int invG = 334845270;
    const double eps = 1e-7;
    
    int read()
    {
       int ans = 0,op = 1;char ch = getchar();
       while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
       while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
       return ans * op;
    }
    
    int n,f[M],g[M],c[M],invg[M],d[M],rev[M],fac[M],inv[M],ans;
    
    int inc(int a,int b){return (a+b) % mod;}
    int mul(int a,int b){return 1ll * a * b % mod;}
    int qpow(int a,ll b)
    {
       int p = 1;
       while(b)
       {
          if(b & 1) p = mul(p,a);
          a = mul(a,a),b >>= 1;
       }
       return p;
    }
    
    void NTT(int *a,int l,int f)
    {
       rep(i,0,l-1) if(i < rev[i]) swap(a[i],a[rev[i]]);
       for(int i = 1;i < l;i <<= 1)
       {
          int w1 = qpow(f ? G : invG,(mod-1) / (i<<1));
          for(int j = 0;j < l;j += (i<<1))
          {
    	 int w = 1;
    	 rep(k,0,i-1)
    	 {
    	    int kx = a[k+j],ky = mul(a[k+j+i],w);
    	    a[k+j] = inc(kx,ky),a[k+j+i] = inc(kx,mod-ky),w = mul(w,w1);
    	 }
          }
       }
       if(!f)
       {
          int inv = qpow(l,mod-2);
          rep(i,0,l-1) a[i] = mul(a[i],inv);
       }
    }
    
    void init()
    {
       fac[0] = inv[0] = inv[1] = 1;
       rep(i,1,n) fac[i] = mul(fac[i-1],i);
       inv[n] = qpow(fac[n],mod-2);
       per(i,n-1,1) inv[i] = mul(inv[i+1],i+1);
    }
    
    int C(int n,int m){return mul(mul(fac[n],inv[m]),inv[n-m]);}
    
    void getinv(int *a,int *b,int len)
    {
       if(len == 1) {b[0] = qpow(a[0],mod-2);return;}
       getinv(a,b,(len+1)>>1);
       int l = 1,L = 0;
       while(l < (len<<1)) l <<= 1,L++;
       rep(i,0,l-1) rev[i] = (rev[i>>1] >> 1) | ((i&1) << (L-1));
       rep(i,0,len-1) d[i] = a[i];
       rep(i,len,l-1) d[i] = 0;
       NTT(d,l,1),NTT(b,l,1);
       rep(i,0,l-1) b[i] = mul(inc(2,mod-mul(d[i],b[i])),b[i]);
       NTT(b,l,0);
       rep(i,len,l-1) b[i] = 0;
    }
    
    int main()
    {
       n = read(),init();
       //rep(i,1,n) c[i] = mul(qpow(2,C(i,2)),inv[i-1]);错误写法
       //rep(i,0,n) g[i] = mul(qpow(2,C(i,2)),inv[i]);
       rep(i,1,n) c[i] = mul(qpow(2,(1ll * i * (i-1) / 2)),inv[i-1]);
       rep(i,0,n) g[i] = mul(qpow(2,(1ll * i * (i-1) / 2)),inv[i]);
       getinv(g,invg,n+1);
       int l = 1,L = 0;
       while(l < n<<1) l <<= 1,L++;
       rep(i,0,l-1) rev[i] = (rev[i>>1] >> 1) | ((i&1) << (L-1));
       NTT(invg,l,1),NTT(c,l,1);
       rep(i,0,l-1) c[i] = mul(c[i],invg[i]);
       NTT(c,l,0);
       ans = mul(c[n],fac[n-1]);
       printf("%d
    ",ans);
       return 0;
    }
    
    
  • 相关阅读:
    剑指 Offer 43. 1~n整数中1出现的次数
    剑指 Offer 54. 二叉搜索树的第k大节点(递归)
    第三个JSP作业
    第二个JSP作业-用循环结构输出三行五列的table
    第二个JSP作业-编写jsp页面,输出大写、小写英文字母表
    第一个JSP作业
    安卓课设
    第十次作业
    第八次作业
    第九次作业
  • 原文地址:https://www.cnblogs.com/captain1/p/10460076.html
Copyright © 2020-2023  润新知