• E. Two Arrays and Sum of Functions(排序不等式)


    E. Two Arrays and Sum of Functions

    time limit per test

    2 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    You are given two arrays aa and bb, both of length nn.

    Let's define a function f(l,r)=∑l≤i≤rai⋅bif(l,r)=∑l≤i≤rai⋅bi.

    Your task is to reorder the elements (choose an arbitrary order of elements) of the array bb to minimize the value of ∑1≤l≤r≤nf(l,r)∑1≤l≤r≤nf(l,r). Since the answer can be very large, you have to print it modulo 998244353998244353. Note that you should minimize the answer but not its remainder.

    Input

    The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aaand bb.

    The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1061≤ai≤106), where aiai is the ii-th element of aa.

    The third line of the input contains nn integers b1,b2,…,bnb1,b2,…,bn (1≤bj≤1061≤bj≤106), where bjbj is the jj-th element of bb.

    Output

    Print one integer — the minimum possible value of ∑1≤l≤r≤nf(l,r)∑1≤l≤r≤nf(l,r) after rearranging elements of bb, taken modulo 998244353998244353. Note that you should minimize the answer but not its remainder.

    Examples

    input

    Copy

    5
    1 8 7 2 4
    9 7 2 9 3
    

    output

    Copy

    646
    

    input

    Copy

    1
    1000000
    1000000
    

    output

    Copy

    757402647
    

    input

    Copy

    2
    1 3
    4 2
    

    output

    Copy

    20

    本题并不难

    我们只需要考虑

    每个相乘之后的之对答案的贡献次数

    很容易推出贡献的次数为i*(n+1-i)

    由于a的位置是不动的那么我们就可以把啊ai改写成ai*i*(n+1-i)

    根据排序不等式https://en.wikipedia.org/wiki/Rearrangement_inequality

    此时我们就可以对ab根据相反的规则来排序

    排序后就可以直接计算出ai的值了

    accode

    #include<bits/stdc++.h>
    using namespace std;
    const long long mod=998244353;
    long long a[200005];
    long long b[200005];
    int  cmp(long long a,long long b)
    {
        return a>b;
    }
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
        }
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&b[i]);
        }
        for(int i=1;i<=n;i++)
        {
            a[i]=(a[i]*i*(n-i+1));
        }
        sort(a+1,a+1+n);
        sort(b+1,b+1+n,cmp);
        long long ans=0;
        long long tmp=0;
        for(int i=1;i<=n;i++)
        {
            a[i]=a[i]%mod;
            b[i]=b[i]%mod;
            tmp=(a[i]*b[i])%mod;
            ans=(ans+tmp)%mod;
        }
        printf("%lld
    ",ans);
    }
  • 相关阅读:
    性能测试分类
    monkey命令选项参考
    Hibernate三种状态
    Hibernate 的延迟加载
    JAVA2的三个版本
    缓存
    队列、生产消费模型.html
    socketserver剖析.html
    socketserver 之 recv(1024) 问题!
    粘包问题
  • 原文地址:https://www.cnblogs.com/caowenbo/p/11852254.html
Copyright © 2020-2023  润新知