• Mapreduce中的reduce数量和分区控制


    mapreduce中的reduce数量是由什么来进行控制的呢?

    1、numReduceTasks

    如下是用来进行测试的一段wordcount的代码

    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Partitioner;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class PartTest {
    	
    	
    	public static void main(String[] args){
    		Path inFile = new Path(args[0]);
    		Path outFile = new Path(args[1]);
    		
    		Job job;
    		try {
    			job = Job.getInstance();
    			job.setJarByClass(PartTest.class);
    		       
    			FileInputFormat.addInputPath(job , inFile);  
    			FileOutputFormat.setOutputPath(job, outFile);
    			
    			job.setReducerClass(PartTestreducer.class);
    			job.setMapperClass(PartTestmapper.class);
    			
    			
    			job.setMapOutputKeyClass(Text.class);
    			job.setMapOutputValueClass(IntWritable.class);
    			
    			job.setOutputKeyClass(Text.class);
    			job.setOutputValueClass(IntWritable.class);
    			
    			
    			try {
    				job.waitForCompletion(true);
    			} catch (ClassNotFoundException e) {
    				// TODO Auto-generated catch block
    				e.printStackTrace();
    			} catch (InterruptedException e) {
    				// TODO Auto-generated catch block
    				e.printStackTrace();
    			}
    		} catch (IOException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    		
            
            /** 
             * InputFormat描述map-reduce中对job的输入定义 
             * setInputPaths():为map-reduce job设置路径数组作为输入列表 
             * setInputPath():为map-reduce job设置路径数组作为输出列表 
             */  
            
    	}
    
    }
    
    
    class PartTestmapper extends Mapper<LongWritable, Text, Text, IntWritable>{
    	private final IntWritable one = new IntWritable(1);  
        //private Text word = new Text(); 
    	@Override
    	protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
    			throws IOException, InterruptedException {
    		// TODO Auto-generated method stub
    		/*
    		String line = value.toString();
    		for(String s : line.split("\s+")){
    			//if(s.length() > 0){
    				context.write(new Text(s), one);
    			//}
    		}
    		*/
    		
    		
    		 String[] line = value.toString().split("\W+");
    		 for(int i = 0 ; i<= line.length-1 ;i++){
    			 String s = line[i];
    		    context.write(new Text(s), new IntWritable(1));
    		}
    		
    		/*
    		
    		String line = value.toString();  
    		Text word = new Text();
            StringTokenizer token = new StringTokenizer(line);  
            while (token.hasMoreTokens()) {  
                word.set(token.nextToken());  
                context.write(word, one);  
            }
            */
    	}
    	
    }
    
    class PartTestreducer extends Reducer<Text, IntWritable, Text, IntWritable>{
    
    	@Override
    	protected void reduce(Text arg0, Iterable<IntWritable> arg1,
    			Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
    		// TODO Auto-generated method stub
    		int sum = 0;
    		for(IntWritable i : arg1){
    			sum += i.get();
    		}
    		context.write(arg0, new IntWritable(sum));
    	}
    	
    	
    }
    

    将上述代码打包成 parttest.jar,并上传到服务器的opt目录

    创建文件/opt/test.txt,并上传到hdfs的/tmp目录下

    文本内容如下:

    hello world
    hello test
    test hadoop
    hadoop hdfs
    hive
    sql
    sqoop
    

    在服务器上执行:

    hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out1"
    

    我们可以看到日志输出文件:

    在这里可以看到只启动了一个reduce任务

    然后使用

    hadoop fs -ls /tmp/part/out1
    

    可以看到只生成了一个分区文件part-r-00000:

    如果我们把上述代码进行修改:

                            job = Job.getInstance();
    			job.setJarByClass(PartTest.class);
    		       
    			FileInputFormat.addInputPath(job , inFile);  
    			FileOutputFormat.setOutputPath(job, outFile);
    			
    			job.setNumReduceTasks(3);
    			
    			job.setReducerClass(PartTestreducer.class);
    			job.setMapperClass(PartTestmapper.class);
    			
    			
    			job.setMapOutputKeyClass(Text.class);
    			job.setMapOutputValueClass(IntWritable.class);
    			
    			job.setOutputKeyClass(Text.class);
    			job.setOutputValueClass(IntWritable.class);
    			
    

      

    我们在代码里新加了一行 :job.setNumReduceTasks(3);

    将代码重新打包上传,执行:

    hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out2"
    

    将结果输出到/tmp/part/out2目录

    可以看到启动了3个reduce任务。

    然后使用

    hadoop fs -ls /tmp/part/out2
    

    可以看到/tmp/part/out2文件夹中生成了3个part文件:

     所以可以使用  setNumReduceTasks  来设置reduce的数量

    2、mapreduce的分区

    我们在原来的代码的最后一段加上如下代码:

    class PartTestPartitioner extends Partitioner<Text,IntWritable>{
    
    
    	@Override
    	//参数含义:第一个参数为map任务的outputkey。class,第二个参数为map任务的outputvalue。class,第三个参数为分区的数量,默认为1
    	public int getPartition(Text key, IntWritable value, int numPartitions) {
    		// TODO Auto-generated method stub
    		
    		if(key.toString().startsWith("h")){
    		     return 0%numPartitions;
    		}
    		else if(key.toString().startsWith("s")){
    			return 1%numPartitions;
    		}
    		else{
    			return 2%numPartitions;
    		}
    	}
    	
    }
     

    这段代码的含义是:

    将以h开头的统计结果输出到part-r-00000

    将以s开头的统计结果输出到part-r-00001

    将以其他字母开头的统计结果输出到part-r-00002

    对原有代码进行如下修改:

                            job = Job.getInstance();
    			job.setJarByClass(PartTest.class);
    		       
    			FileInputFormat.addInputPath(job , inFile);  
    			FileOutputFormat.setOutputPath(job, outFile);
    			
    			job.setNumReduceTasks(3);
    			job.setPartitionerClass(PartTestPartitioner.class);
    			
    			job.setReducerClass(PartTestreducer.class);
    			job.setMapperClass(PartTestmapper.class);
    			
    			
    			job.setMapOutputKeyClass(Text.class);
    			job.setMapOutputValueClass(IntWritable.class);
    			
    			job.setOutputKeyClass(Text.class);
    			job.setOutputValueClass(IntWritable.class);
    

      

    新加了一行代码:job.setPartitionerClass(PartTestPartitioner.class);

    将代码重新打包上传,执行:

    hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out3"
    

    将结果输出到/tmp/part/out3目录

    可以看到启动了3个reduce任务。

    然后使用

    hadoop fs -ls /tmp/part/out3
    

    可以看到/tmp/part/out3文件夹中生成了3个part文件:

     分别查看三个文件:

    可以看到输出结果已经分别输出到对应的分区文件。

    注意:

    job.setNumReduceTasks(3);
    job.setPartitionerClass(PartTestPartitioner.class);

    NumReduceTasks的数量不能小于partitioner的数量,否则结果会写到part-r-00000中

  • 相关阅读:
    JavaScript 正则表达式
    android源代码提示文本框还能输入多少个字符
    js实现鼠标点击input框后里面的内容就消失代码
    使用prompt输入一句英文句子和排序方式(升/降),将所有单词按排序方式排序后在网页上输出
    Javascript输出表格
    flutter 按键监听
    3.声明
    2.基础类型
    1.安装TypeScrpit
    苹果app证书
  • 原文地址:https://www.cnblogs.com/cangos/p/6429609.html
Copyright © 2020-2023  润新知