Spark Streaming编程指南
Overview
Spark Streaming属于Spark的核心api,它支持高吞吐量、支持容错的实时流数据处理。
它可以接受来自Kafka, Flume, Twitter, ZeroMQ和TCP Socket的数据源,使用简单的api函数比如 map
, reduce
, join
, window等操作,还可以直接使用内置的机器学习算法、图算法包来处理数据。
它的工作流程像下面的图所示一样,接受到实时数据后,给数据分批次,然后传给Spark Engine处理最后生成该批次的结果。
它支持的数据流叫Dstream,直接支持Kafka、Flume的数据源。Dstream是一种连续的RDDs,下面是一个例子帮助大家理解Dstream。
A Quick Example
// 创建StreamingContext,1秒一个批次
val ssc = new StreamingContext(sparkConf, Seconds(1));
// 获得一个DStream负责连接 监听端口:地址 val lines = ssc.socketTextStream(serverIP, serverPort);
// 对每一行数据执行Split操作 val words = lines.flatMap(_.split(" ")); // 统计word的数量 val pairs = words.map(word => (word, 1)); val wordCounts = pairs.reduceByKey(_ + _); // 输出结果 wordCounts.print(); ssc.start(); // 开始 ssc.awaitTermination(); // 计算完毕退出
具体的代码可以访问这个页面:
https://github.com/apache/incubator-spark/blob/master/examples/src/main/scala/org/apache/spark/streaming/examples/NetworkWordCount.scala
如果已经装好Spark的朋友,我们可以通过下面的例子试试。
首先,启动Netcat,这个工具在Unix-like的系统都存在,是个简易的数据服务器。
使用下面这句命令来启动Netcat:
$ nc -lk 9999
接着启动example
$ ./bin/run-example org.apache.spark.streaming.examples.NetworkWordCount local[2] localhost 9999
在Netcat这端输入hello world,看Spark这边的
# TERMINAL 1: # Running Netcat $ nc -lk 9999 hello world ... # TERMINAL 2: RUNNING NetworkWordCount or JavaNetworkWordCount $ ./bin/run-example org.apache.spark.streaming.examples.NetworkWordCount local[2] localhost 9999 ... ------------------------------------------- Time: 1357008430000 ms ------------------------------------------- (hello,1) (world,1) ...
Basics
下面这块是如何编写代码的啦,哇咔咔!
首先我们要在SBT或者Maven工程添加以下信息:
groupId = org.apache.spark artifactId = spark-streaming_2.10 version = 0.9.0-incubating
//需要使用一下数据源的,还要添加相应的依赖
Source Artifact Kafka spark-streaming-kafka_2.10 Flume spark-streaming-flume_2.10 Twitter spark-streaming-twitter_2.10 ZeroMQ spark-streaming-zeromq_2.10 MQTT spark-streaming-mqtt_2.10
接着就是实例化
new StreamingContext(master, appName, batchDuration, [sparkHome], [jars])
这是之前的例子对DStream的操作。
Input Sources
除了sockets之外,我们还可以这样创建Dstream
streamingContext.fileStream(dataDirectory)
这里有3个要点:
(1)dataDirectory下的文件格式都是一样
(2)在这个目录下创建文件都是通过移动或者重命名的方式创建的
(3)一旦文件进去之后就不能再改变
假设我们要创建一个Kafka的Dstream。
import org.apache.spark.streaming.kafka._ KafkaUtils.createStream(streamingContext, kafkaParams, ...)
如果我们需要自定义流的receiver,可以查看https://spark.incubator.apache.org/docs/latest/streaming-custom-receivers.html
Operations
对于Dstream,我们可以进行两种操作,transformations 和 output
Transformations
Transformation Meaning map(func) 对每一个元素执行func方法 flatMap(func) 类似map函数,但是可以map到0+个输出 filter(func) 过滤 repartition(numPartitions) 增加分区,提高并行度 union(otherStream) 合并两个流 count() 统计元素的个数 reduce(func) 对RDDs里面的元素进行聚合操作,2个输入参数,1个输出参数 countByValue() 针对类型统计,当一个Dstream的元素的类型是K的时候,调用它会返回一个新的Dstream,包含<K,Long>键值对,Long是每个K出现的频率。 reduceByKey(func, [numTasks]) 对于一个(K, V)类型的Dstream,为每个key,执行func函数,默认是local是2个线程,cluster是8个线程,也可以指定numTasks join(otherStream, [numTasks]) 把(K, V)和(K, W)的Dstream连接成一个(K, (V, W))的新Dstream cogroup(otherStream, [numTasks]) 把(K, V)和(K, W)的Dstream连接成一个(K, Seq[V], Seq[W])的新Dstream transform(func) 转换操作,把原来的RDD通过func转换成一个新的RDD
updateStateByKey(func) 针对key使用func来更新状态和值,可以将state该为任何值
UpdateStateByKey Operation
使用这个操作,我们是希望保存它状态的信息,然后持续的更新它,使用它有两个步骤:
(1)定义状态,这个状态可以是任意的数据类型
(2)定义状态更新函数,从前一个状态更改新的状态
下面展示一个例子:
def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = { val newCount = ... // add the new values with the previous running count to get the new count Some(newCount) }
它可以用在包含(word, 1) 的Dstream当中,比如前面展示的example
val runningCounts = pairs.updateStateByKey[Int](updateFunction _)
它会针对里面的每个word调用一下更新函数,newValues是最新的值,runningCount是之前的值。
Transform Operation
和transformWith一样,可以对一个Dstream进行RDD->RDD操作,比如我们要对Dstream流里的RDD和另外一个数据集进行join操作,但是Dstream的API没有直接暴露出来,我们就可以使用transform方法来进行这个操作,下面是例子:
val spamInfoRDD = sparkContext.hadoopFile(...) // RDD containing spam information val cleanedDStream = inputDStream.transform(rdd => { rdd.join(spamInfoRDD).filter(...) // join data stream with spam information to do data cleaning ... })
另外,我们也可以在里面使用机器学习算法和图算法。
Window Operations
、
先举个例子吧,比如前面的word count的例子,我们想要每隔10秒计算一下最近30秒的单词总数。
我们可以使用以下语句:
// Reduce last 30 seconds of data, every 10 seconds val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))
这里面提到了windows的两个参数:
(1)window length:window的长度是30秒,最近30秒的数据
(2)slice interval:计算的时间间隔
通过这个例子,我们大概能够窗口的意思了,定期计算滑动的数据。
下面是window的一些操作函数,还是有点儿理解不了window的概念,Meaning就不翻译了,直接删掉
Transformation Meaning window(windowLength, slideInterval) countByWindow(windowLength, slideInterval) reduceByWindow(func, windowLength, slideInterval) reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]) reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks]) countByValueAndWindow(windowLength, slideInterval, [numTasks])
Output Operations
Output Operation Meaning
print() 打印到控制台
foreachRDD(func) 对Dstream里面的每个RDD执行func,保存到外部系统
saveAsObjectFiles(prefix, [suffix]) 保存流的内容为SequenceFile, 文件名 : "prefix-TIME_IN_MS[.suffix]".
saveAsTextFiles(prefix, [suffix]) 保存流的内容为文本文件, 文件名 : "prefix-TIME_IN_MS[.suffix]".
saveAsHadoopFiles(prefix, [suffix]) 保存流的内容为hadoop文件, 文件名 : "prefix-TIME_IN_MS[.suffix]".
Persistence
Dstream中的RDD也可以调用persist()方法保存在内存当中,但是基于window和state的操作,reduceByWindow,
reduceByKeyAndWindow,
updateStateByKey它们就是隐式的保存了,系统已经帮它自动保存了。
从网络接收的数据(such as, Kafka, Flume, sockets, etc.),默认是保存在两个节点来实现容错性,以序列化的方式保存在内存当中。
RDD Checkpointing
状态的操作是基于多个批次的数据的。它包括基于window的操作和updateStateByKey。因为状态的操作要依赖于上一个批次的数据,所以它要根据时间,不断累积元数据。为了清空数据,它支持周期性的检查点,通过把中间结果保存到hdfs上。因为检查操作会导致保存到hdfs上的开销,所以设置这个时间间隔,要很慎重。对于小批次的数据,比如一秒的,检查操作会大大降低吞吐量。但是检查的间隔太长,会导致任务变大。通常来说,5-10秒的检查间隔时间是比较合适的。
ssc.checkpoint(hdfsPath) //设置检查点的保存位置 dstream.checkpoint(checkpointInterval) //设置检查点间隔
对于必须设置检查点的Dstream,比如通过updateStateByKey
和reduceByKeyAndWindow创建的Dstream,默认设置是至少10秒。
Performance Tuning
对于调优,可以从两个方面考虑:
(1)利用集群资源,减少处理每个批次的数据的时间
(2)给每个批次的数据量的设定一个合适的大小
Level of Parallelism
像一些分布式的操作,比如reduceByKey和
reduceByKeyAndWindow,默认的8个并发线程,可以通过对应的函数提高它的值,或者通过修改参数spark.default.parallelism来提高这个默认值。
Task Launching Overheads
通过进行的任务太多也不好,比如每秒50个,发送任务的负载就会变得很重要,很难实现压秒级的时延了,当然可以通过压缩来降低批次的大小。
Setting the Right Batch Size
要使流程序能在集群上稳定的运行,要使处理数据的速度跟上数据流入的速度。最好的方式计算这个批量的大小,我们首先设置batch size为5-10秒和一个很低的数据输入速度。确实系统能跟上数据的速度的时候,我们可以根据经验设置它的大小,通过查看日志看看Total delay的多长时间。如果delay的小于batch的,那么系统可以稳定,如果delay一直增加,说明系统的处理速度跟不上数据的输入速度。
24/7 Operation
Spark默认不会忘记元数据,比如生成的RDD,处理的stages,但是Spark Streaming是一个24/7的程序,它需要周期性的清理元数据,通过spark.cleaner.ttl来设置。比如我设置它为600,当超过10分钟的时候,Spark就会清楚所有元数据,然后持久化RDDs。但是这个属性要在SparkContext 创建之前设置。
但是这个值是和任何的window操作绑定。Spark会要求输入数据在过期之后必须持久化到内存当中,所以必须设置delay的值至少和最大的window操作一致,如果设置小了,就会报错。
Monitoring
除了Spark内置的监控能力,还可以StreamingListener这个接口来获取批处理的时间, 查询时延, 全部的端到端的试验。
Memory Tuning
Spark Stream默认的序列化方式是StorageLevel.MEMORY_ONLY_SER,而不是RDD的StorageLevel.MEMORY_ONLY。
默认的,所有持久化的RDD都会通过被Spark的LRU算法剔除出内存,如果设置了spark.cleaner.ttl,就会周期性的清理,但是这个参数设置要很谨慎。一个更好的方法是设置spark.streaming.unpersist为true,这就让Spark来计算哪些RDD需要持久化,这样有利于提高GC的表现。
推荐使用concurrent mark-and-sweep GC,虽然这样会降低系统的吞吐量,但是这样有助于更稳定的进行批处理。
Fault-tolerance Properties
Failure of a Worker Node
下面有两种失效的方式:
1.使用hdfs上的文件,因为hdfs是可靠的文件系统,所以不会有任何的数据失效。
2.如果数据来源是网络,比如Kafka和Flume,为了防止失效,默认是数据会保存到2个节点上,但是有一种可能性是接受数据的节点挂了,那么数据可能会丢失,因为它还没来得及把数据复制到另外一个节点。
Failure of the Driver Node
为了支持24/7不间断的处理,Spark支持驱动节点失效后,重新恢复计算。Spark Streaming会周期性的写数据到hdfs系统,就是前面的检查点的那个目录。驱动节点失效之后,StreamingContext可以被恢复的。
为了让一个Spark Streaming程序能够被回复,它需要做以下操作:
(1)第一次启动的时候,创建 StreamingContext,创建所有的streams,然后调用start()方法。
(2)恢复后重启的,必须通过检查点的数据重新创建StreamingContext。
下面是一个实际的例子:
通过StreamingContext.getOrCreate来构造StreamingContext,可以实现上面所说的。
// Function to create and setup a new StreamingContext def functionToCreateContext(): StreamingContext = { val ssc = new StreamingContext(...) // new context val lines = ssc.socketTextStream(...) // create DStreams ... ssc.checkpoint(checkpointDirectory) // set checkpoint directory ssc } // Get StreaminContext from checkpoint data or create a new one val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _) // Do additional setup on context that needs to be done, // irrespective of whether it is being started or restarted context. ... // Start the context context.start() context.awaitTermination()
在stand-alone的部署模式下面,驱动节点失效了,也可以自动恢复,让别的驱动节点替代它。这个可以在本地进行测试,在提交的时候采用supervise模式,当提交了程序之后,使用jps查看进程,看到类似DriverWrapper就杀死它,如果是使用YARN模式的话就得使用其它方式来重新启动了。
这里顺便提一下向客户端提交程序吧,之前总结的时候把这块给落下了。
./bin/spark-class org.apache.spark.deploy.Client launch [client-options] <cluster-url> <application-jar-url> <main-class> [application-options] cluster-url: master的地址. application-jar-url: jar包的地址,最好是hdfs上的,带上hdfs://...否则要所有的节点的目录下都有这个jar的
main-class: 要发布的程序的main函数所在类.
Client Options:
--memory <count> (驱动程序的内存,单位是MB)
--cores <count> (为你的驱动程序分配多少个核心)
--supervise (节点失效的时候,是否重新启动应用)
--verbose (打印增量的日志输出)
在未来的版本,会支持所有的数据源的可恢复性。
为了更好的理解基于HDFS的驱动节点失效恢复,下面用一个简单的例子来说明:
Time Number of lines in input file Output without driver failure Output with driver failure 1 10 10 10 2 20 20 20 3 30 30 30 4 40 40 [DRIVER FAILS] no output 5 50 50 no output 6 60 60 no output 7 70 70 [DRIVER RECOVERS] 40, 50, 60, 70 8 80 80 80 9 90 90 90 10 100 100 100
在4的时候出现了错误,40,50,60都没有输出,到70的时候恢复了,恢复之后把之前没输出的一下子全部输出。
Example代码分析
val ssc = new StreamingContext(sparkConf, Seconds(1)); // 获得一个DStream负责连接 监听端口:地址 val lines = ssc.socketTextStream(serverIP, serverPort); // 对每一行数据执行Split操作 val words = lines.flatMap(_.split(" ")); // 统计word的数量 val pairs = words.map(word => (word, 1)); val wordCounts = pairs.reduceByKey(_ + _); // 输出结果 wordCounts.print(); ssc.start(); // 开始 ssc.awaitTermination(); // 计算完毕退出
1、首先实例化一个StreamingContext
2、调用StreamingContext的socketTextStream
3、对获得的DStream进行处理
4、调用StreamingContext是start方法,然后等待
我们看StreamingContext的socketTextStream方法吧。
def socketTextStream( hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 ): ReceiverInputDStream[String] = { socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel) }
1、StoageLevel是StorageLevel.MEMORY_AND_DISK_SER_2
2、使用SocketReceiver的bytesToLines把输入流转换成可遍历的数据
继续看socketStream方法,它直接new了一个
new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
继续深入挖掘SocketInputDStream,追述一下它的继承关系,SocketInputDStream>>ReceiverInputDStream>>InputDStream>>DStream。
具体实现ReceiverInputDStream的类有好几个,基本上都是从网络端来数据的。
它实现了ReceiverInputDStream的getReceiver方法,实例化了一个SocketReceiver来接收数据。
SocketReceiver的onStart方法里面调用了receive方法,处理代码如下:
socket = new Socket(host, port) val iterator = bytesToObjects(socket.getInputStream()) while(!isStopped && iterator.hasNext) { store(iterator.next) }
1、new了一个Socket来接收数据,用bytesToLines方法把InputStream转换成一行一行的字符串。
2、把每一行数据用store方法保存起来,store方法是从SocketReceiver的父类Receiver继承而来,内部实现是:
def store(dataItem: T) {
executor.pushSingle(dataItem)
}
executor是ReceiverSupervisor类型,Receiver的操作都是由它来处理。这里先不深纠,后面我们再说这个pushSingle的实现。
到这里我们知道lines的类型是SocketInputDStream,然后对它是一顿的转换,flatMap、map、reduceByKey、print,这些方法都不是RDD的那种方法,而是DStream独有的。
讲到上面这几个方法,我们开始转入DStream了,flatMap、map、reduceByKey、print方法都涉及到DStream的转换,这和RDD的转换是类似的。我们讲一下reduceByKey和print。
reduceByKey方法和RDD一样,调用的combineByKey方法实现的,不一样的是它直接new了一个ShuffledDStream了,我们接着看一下它的实现吧。
override def compute(validTime: Time): Option[RDD[(K,C)]] = { parent.getOrCompute(validTime) match { case Some(rdd) => Some(rdd.combineByKey[C](createCombiner, mergeValue, mergeCombiner, partitioner, mapSideCombine)) case None => None } }
在compute阶段,对通过Time获得的rdd进行reduceByKey操作。接下来的print方法也是一个转换:
new ForEachDStream(this, context.sparkContext.clean(foreachFunc)).register()
打印前十个,超过10个打印"..."。需要注意register方法。
ssc.graph.addOutputStream(this)
它会把代码插入到当前的DStream添加到outputStreams里面,后面输出的时候如果没有outputStream就不会有输出,这个需要记住哦!
启动过程分析
前戏结束之后,ssc.start() 高潮开始了。 start方法很小,最核心的一句是JobScheduler的start方法。我们得转到JobScheduler方法上面去。
下面是start方法的代码:
def start(): Unit = synchronized {
// 接受到JobSchedulerEvent就处理事件 eventActor = ssc.env.actorSystem.actorOf(Props(new Actor { def receive = { case event: JobSchedulerEvent => processEvent(event) } }), "JobScheduler") listenerBus.start() receiverTracker = new ReceiverTracker(ssc) receiverTracker.start() jobGenerator.start() }
1、启动了一个Actor来处理JobScheduler的JobStarted、JobCompleted、ErrorReported事件。
2、启动StreamingListenerBus作为监听器。
3、启动ReceiverTracker。
4、启动JobGenerator。
我们接下来看看ReceiverTracker的start方法。
def start() = synchronized {if (!receiverInputStreams.isEmpty) { actor = ssc.env.actorSystem.actorOf(Props(new ReceiverTrackerActor), "ReceiverTracker") receiverExecutor.start() } }
1、首先判断了一下receiverInputStreams不能为空,那receiverInputStreams是怎么时候写入值的呢?答案在SocketInputDStream的父类InputDStream当中,当实例化InputDStream的时候会在DStreamGraph里面添加InputStream。
abstract class InputDStream[T: ClassTag] (@transient ssc_ : StreamingContext) extends DStream[T](ssc_) { ssc.graph.addInputStream(this) //.... }
2、实例化ReceiverTrackerActor,它负责RegisterReceiver(注册Receiver)、AddBlock、ReportError(报告错误)、DeregisterReceiver(注销Receiver)等事件的处理。
3、启动receiverExecutor(实际类是ReceiverLauncher,这名字起得。。),它主要负责启动Receiver,start方法里面调用了startReceivers方法吧。
private def startReceivers() { // 对应着上面的那个例子,getReceiver方法获得是SocketReceiver val receivers = receiverInputStreams.map(nis => { val rcvr = nis.getReceiver() rcvr.setReceiverId(nis.id) rcvr }) // 查看是否所有的receivers都有优先选择机器,这个需要重写Receiver的preferredLocation方法,目前只有FlumeReceiver重写了 val hasLocationPreferences = receivers.map(_.preferredLocation.isDefined).reduce(_ && _) // 创建一个并行receiver集合的RDD, 把它们分散到各个worker节点上 val tempRDD = if (hasLocationPreferences) { val receiversWithPreferences = receivers.map(r => (r, Seq(r.preferredLocation.get))) ssc.sc.makeRDD[Receiver[_]](receiversWithPreferences) } else { ssc.sc.makeRDD(receivers, receivers.size) } // 在worker节点上启动Receiver的方法,遍历所有Receiver,然后启动 val startReceiver = (iterator: Iterator[Receiver[_]]) => { if (!iterator.hasNext) { throw new SparkException("Could not start receiver as object not found.") } val receiver = iterator.next() val executor = new ReceiverSupervisorImpl(receiver, SparkEnv.get) executor.start() executor.awaitTermination() } // 运行这个重复的作业来确保所有的slave都已经注册了,避免所有的receivers都到一个节点上 if (!ssc.sparkContext.isLocal) { ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect() } // 把receivers分发出去,启动 ssc.sparkContext.runJob(tempRDD, startReceiver) }
1、遍历receiverInputStreams获取所有的Receiver。
2、查看这些Receiver是否全都有优先选择机器。
3、把SparkContext的makeRDD方法把所有Receiver包装到ParallelCollectionRDD里面,并行度是Receiver的数量。
4、发个小任务给确保所有的slave节点都已经注册了(这个小任务有点儿莫名其妙,感觉怪怪的)。
5、提交作业,启动所有Receiver。
Spark写得实在是太巧妙了,居然可以把Receiver包装在RDD里面,当做是数据来处理!
启动Receiver的时候,new了一个ReceiverSupervisorImpl,然后调的start方法,主要干了这么三件事情,代码就不贴了。
1、启动BlockGenerator。
2、调用Receiver的OnStart方法,开始接受数据,并把数据写入到ReceiverSupervisor。
3、调用onReceiverStart方法,发送RegisterReceiver消息给driver报告自己启动了。
保存接收到的数据
ok,到了这里,重点落到了BlockGenerator。前面说到SocketReceiver把接受到的数据调用ReceiverSupervisor的pushSingle方法保存。
// 这是ReceiverSupervisorImpl的方法
def pushSingle(data: Any) { blockGenerator += (data) } // 这是BlockGenerator的方法 def += (data: Any): Unit = synchronized { currentBuffer += data }
我们看一下它的start方法吧。
def start() {
blockIntervalTimer.start()
blockPushingThread.start()
}
它启动了一个定时器RecurringTimer和一个线程执行keepPushingBlocks方法。
先看RecurringTimer的实现:
while (!stopped) { clock.waitTillTime(nextTime) callback(nextTime) prevTime = nextTime nextTime += period }
每隔一段时间就执行callback函数,callback函数是new的时候传进来的,是BlockGenerator的updateCurrentBuffer方法。
private def updateCurrentBuffer(time: Long): Unit = synchronized { try { val newBlockBuffer = currentBuffer currentBuffer = new ArrayBuffer[Any] if (newBlockBuffer.size > 0) { val blockId = StreamBlockId(receiverId, time - blockInterval) val newBlock = new Block(blockId, newBlockBuffer) blocksForPushing.put(newBlock)
} } catch {case t: Throwable => reportError("Error in block updating thread", t) } }
它new了一个Block出来,然后添加到blocksForPushing这个ArrayBlockingQueue队列当中。
提到这里,有两个参数需要大家注意的:
spark.streaming.blockInterval 默认值是200
spark.streaming.blockQueueSize 默认值是10
这是前面提到的间隔时间和队列的长度,间隔时间默认是200毫秒,队列是最多能容纳10个Block,多了就要阻塞了。
我们接下来看一下BlockGenerator另外启动的那个线程执行的keepPushingBlocks方法到底在干什么?
private def keepPushingBlocks() {
while(!stopped) { Option(blocksForPushing.poll(100, TimeUnit.MILLISECONDS)) match { case Some(block) => pushBlock(block) case None => } }
// ...退出之前把剩下的也输出去了 }
它在把blocksForPushing中的block不停的拿出来,调用pushBlock方法,这个方法属于在实例化BlockGenerator的时候,从ReceiverSupervisorImpl传进来的BlockGeneratorListener的。
private val blockGenerator = new BlockGenerator(new BlockGeneratorListener { def onError(message: String, throwable: Throwable) { reportError(message, throwable) } def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) { pushArrayBuffer(arrayBuffer, None, Some(blockId)) } }, streamId, env.conf)
1、reportError,通过actor向driver发送错误报告消息ReportError。
2、调用pushArrayBuffer保存数据。
下面是pushArrayBuffer方法:
def pushArrayBuffer(arrayBuffer: ArrayBuffer[_], optionalMetadata: Option[Any], optionalBlockId: Option[StreamBlockId] ) { val blockId = optionalBlockId.getOrElse(nextBlockId) val time = System.currentTimeMillis blockManager.put(blockId, arrayBuffer.asInstanceOf[ArrayBuffer[Any]], storageLevel, tellMaster = true) reportPushedBlock(blockId, arrayBuffer.size, optionalMetadata) }
1、把Block保存到BlockManager当中,序列化方式为之前提到的StorageLevel.MEMORY_AND_DISK_SER_2(内存不够就写入到硬盘,并且在2个节点上保存的方式)。
2、调用reportPushedBlock给driver发送AddBlock消息,报告新添加的Block,ReceiverTracker收到消息之后更新内部的receivedBlockInfo映射关系。
处理接收到的数据
前面只讲了数据的接收和保存,那数据是怎么处理的呢?
之前一直讲ReceiverTracker,而忽略了之前的JobScheduler的start方法里面最后启动的JobGenerator。
def start(): Unit = synchronized { eventActor = ssc.env.actorSystem.actorOf(Props(new Actor { def receive = { case event: JobGeneratorEvent => processEvent(event) } }), "JobGenerator") if (ssc.isCheckpointPresent) { restart() } else { startFirstTime() } }
1、启动一个actor处理JobGeneratorEvent事件。
2、如果是已经有CheckPoint了,就接着上次的记录进行处理,否则就是第一次启动。
我们先看startFirstTime吧,CheckPoint以后再说吧,有点儿小复杂。
private def startFirstTime() { val startTime = new Time(timer.getStartTime()) graph.start(startTime - graph.batchDuration) timer.start(startTime.milliseconds) }
1、timer.getStartTime计算出来下一个周期的到期时间,计算公式:(math.floor(clock.currentTime.toDouble / period) + 1).toLong * period,以当前的时间/除以间隔时间,再用math.floor求出它的上一个整数(即上一个周期的到期时间点),加上1,再乘以周期就等于下一个周期的到期时间。
2、启动DStreamGraph,启动时间=startTime - graph.batchDuration。
3、启动Timer,我们看看它的定义:
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventActor ! GenerateJobs(new Time(longTime)), "JobGenerator")
到这里就清楚了,DStreamGraph的间隔时间就是timer的间隔时间,启动时间要设置成比Timer早一个时间间隔,原因再慢慢探究。
可以看出来每隔一段时间,Timer给eventActor发送GenerateJobs消息,我们直接去看它的处理方法generateJobs吧,中间忽略了一步,大家自己看。
private def processEvent(event: JobGeneratorEvent) { event match { case GenerateJobs(time) => generateJobs(time) case ClearMetadata(time) => clearMetadata(time) case DoCheckpoint(time) => doCheckpoint(time) case ClearCheckpointData(time) => clearCheckpointData(time) } }
下面是generateJobs方法。
private def generateJobs(time: Time) { SparkEnv.set(ssc.env) Try(graph.generateJobs(time)) match { case Success(jobs) => val receivedBlockInfo = graph.getReceiverInputStreams.map { stream => val streamId = stream.id val receivedBlockInfo = stream.getReceivedBlockInfo(time) (streamId, receivedBlockInfo) }.toMap jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo)) case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) } eventActor ! DoCheckpoint(time) }
1、DStreamGraph生成jobs。
2、从stream那里获取接收到的Block信息。
3、调用submitJobSet方法提交作业。
4、提交完作业之后,做一个CheckPoint。
先看DStreamGraph是怎么生成的jobs。
def generateJobs(time: Time): Seq[Job] = { val jobs = this.synchronized { outputStreams.flatMap(outputStream => outputStream.generateJob(time)) } jobs }
outputStreams在这个例子里面是print这个方法里面添加的,这个在前面说了,我们继续看DStream的generateJob。
private[streaming] def generateJob(time: Time): Option[Job] = { getOrCompute(time) match { case Some(rdd) => { val jobFunc = () => { val emptyFunc = { (iterator: Iterator[T]) => {} } context.sparkContext.runJob(rdd, emptyFunc) } Some(new Job(time, jobFunc)) } case None => None } }
1、调用getOrCompute方法获得RDD
2、new了一个方法去提交这个作业,缺什么都不做
为什么呢?这是直接跳转的错误,呵呵,因为这个outputStream是print方法返回的,它应该是ForEachDStream,所以我们应该看的是它里面的generateJob方法。
override def generateJob(time: Time): Option[Job] = { parent.getOrCompute(time) match { case Some(rdd) => val jobFunc = () => { foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } }
这里请大家千万要注意,不要在这块被卡住了。
我们看看它这个RDD是怎么出来的吧。
private[streaming] def getOrCompute(time: Time): Option[RDD[T]] = { // If this DStream was not initialized (i.e., zeroTime not set), then do it // If RDD was already generated, then retrieve it from HashMap generatedRDDs.get(time) match { // 这个RDD已经被生成过了,直接用就是了 case Some(oldRDD) => Some(oldRDD) // 还没生成过,就调用compte函数生成一个 case None => { if (isTimeValid(time)) { compute(time) match { case Some(newRDD) => // 设置保存的级别 if (storageLevel != StorageLevel.NONE) { newRDD.persist(storageLevel) } // 如果现在需要,就做CheckPoint if (checkpointDuration != null && (time - zeroTime).isMultipleOf(checkpointDuration)) { newRDD.checkpoint() } // 添加到generatedRDDs里面去,可以再次利用 generatedRDDs.put(time, newRDD) Some(newRDD) case None => None } } else { None } } } }
从上面的方法可以看出来它是通过每个DStream自己实现的compute函数得出来的RDD。我们找到SocketInputDStream,没有compute函数,在父类ReceiverInputDStream里面找到了。
override def compute(validTime: Time): Option[RDD[T]] = { // 如果出现了时间比startTime早的话,就返回一个空的RDD,因为这个很可能是master挂了之后的错误恢复
if (validTime >= graph.startTime) { val blockInfo = ssc.scheduler.receiverTracker.getReceivedBlockInfo(id) receivedBlockInfo(validTime) = blockInfo val blockIds = blockInfo.map(_.blockId.asInstanceOf[BlockId]) Some(new BlockRDD[T](ssc.sc, blockIds)) } else { Some(new BlockRDD[T](ssc.sc, Array[BlockId]())) } }
通过DStream的id把receiverTracker当中把接收到的block信息全部拿出来,记录到ReceiverInputDStream自身的receivedBlockInfo这个HashMap里面,就把RDD返回了,RDD里面实际包含的是Block的id的集合。
现在我们就可以回到之前JobGenerator的generateJobs方法,我们就清楚它这句是提交的什么了。
jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo))
JobSet是记录Job的完成情况的,直接看submitJobSet方法吧。
def submitJobSet(jobSet: JobSet) { if (jobSet.jobs.isEmpty) { } else { jobSets.put(jobSet.time, jobSet) jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job))) } }
遍历jobSet里面的所有jobs,通过jobExecutor这个线程池提交。我们看一下JobHandler就知道了。
private class JobHandler(job: Job) extends Runnable { def run() { eventActor ! JobStarted(job) job.run() eventActor ! JobCompleted(job) } }
1、通知eventActor处理JobStarted事件。
2、运行job。
3、通知eventActor处理JobCompleted事件。
这里的重点是job.run,事件处理只是更新相关的job信息。
def run() { result = Try(func()) }
在遍历BlockRDD的时候,在compute函数获取该Block(详细请看BlockRDD),然后对这个RDD的结果进行打印。
到这里就算结束了,最后来个总结吧,图例在下一章补上,这一章只是过程分析:
1、可以有多个输入,我们可以通过StreamingContext定义多个输入,比如我们监听多个(host,ip),可以给它们定义各自的处理逻辑和输出,输出方式不仅限于print方法,还可以有别的方法,saveAsTextFiles和saveAsObjectFiles。这块的设计是支持共享StreamingContext的。
2、StreamingContext启动了JobScheduler,JobScheduler启动ReceiverTracker和JobGenerator。
3、ReceiverTracker是通过把Receiver包装成RDD的方式,发送到Executor端运行起来的,Receiver起来之后向ReceiverTracker发送RegisterReceiver消息。
3、Receiver把接收到的数据,通过ReceiverSupervisor保存。
4、ReceiverSupervisorImpl把数据写入到BlockGenerator的一个ArrayBuffer当中。
5、BlockGenerator内部每个一段时间(默认是200毫秒)就把这个ArrayBuffer构造成Block添加到blocksForPushing当中。
6、BlockGenerator的另外一条线程则不断的把加入到blocksForPushing当中的Block写入到BlockManager当中,并向ReceiverTracker发送AddBlock消息。
7、JobGenerator内部有个定时器,定期生成Job,通过DStream的id,把ReceiverTracker接收到的Block信息从BlockManager上抓取下来进行处理,这个间隔时间是我们在实例化StreamingContext的时候传进去的那个时间,在这个例子里面是Seconds(1)。
转自:http://www.cnblogs.com/cenyuhai/p/3577204.html