• HiveQl 基本查询


    1 基本的Select 操作

    SELECT [ALL | DISTINCT] select_expr, select_expr, ...
    FROM table_reference
    [WHERE where_condition]
    [GROUP BY col_list [HAVING condition]]
    [ CLUSTER BY col_list
    | [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]

    [LIMIT number]
    •使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录
    •Where 条件
    •类似我们传统SQL的where 条件
    •目前支持 AND,OR ,0.9版本支持between
    •IN, NOT IN
    •不支持EXIST ,NOT EXIST
    ORDER BY与SORT BY的不同
    •ORDER BY 全局排序,只有一个Reduce任务
    •SORT BY 只在本机做排序

    Limit
    •Limit 可以限制查询的记录数
    SELECT * FROM t1 LIMIT 5
    •实现Top k 查询
    •下面的查询语句查询销售记录最大的 5 个销售代表。
    SET mapred.reduce.tasks = 1
    SELECT * FROM test SORT BY amount DESC LIMIT 5
    •REGEX Column Specification
    SELECT 语句可以使用正则表达式做列选择,下面的语句查询除了 ds 和 hr 之外的所有列:
    SELECT `(ds|hr)?+.+` FROM test

    例如
    按先件查询
    hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';

    将查询数据输出至目录:
    hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';

    将查询结果输出至本地目录:
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;

    选择所有列到本地目录 :
    hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
    hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;

    将一个表的统计结果插入另一个表中:
    hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
    hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
    JOIN
    hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;

    将多表数据插入到同一表中:
    FROM src
    INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
    INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
    INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
    INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;


    将文件流直接插入文件:
    hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';

    2. 基于Partition的查询

    •一般 SELECT 查询会扫描整个表,使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性
    •Hive 当前的实现是,只有分区断言出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝

    3.Join

    Syntax
    join_table:
    table_reference JOIN table_factor [join_condition]
    | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
    | table_reference LEFT SEMI JOIN table_reference join_condition


    table_reference:
    table_factor
    | join_table


    table_factor:
    tbl_name [alias]
    | table_subquery alias
    | ( table_references )


    join_condition:
    ON equality_expression ( AND equality_expression )*


    equality_expression:
    expression = expression
    •Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务

    •LEFT,RIGHT和FULL OUTER关键字用于处理join中空记录的情况
    •LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现
    •join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统
    •实践中,应该把最大的那个表写在最后


    join 查询时,需要注意几个关键点

    只支持等值join
    •SELECT a.* FROM a JOIN b ON (a.id = b.id)
    •SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department)
    •可以 join 多于 2 个表,例如
    SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)

    •如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务
    LEFT,RIGHT和FULL OUTER

    例子
    •SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)

    •如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写
    •容易混淆的问题是表分区的情况
    • SELECT c.val, d.val FROM c LEFT OUTER JOIN d ON (c.key=d.key)
    WHERE a.ds='2010-07-07' AND b.ds='2010-07-07‘
    •如果 d 表中找不到对应 c 表的记录,d 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 d 表中
    不能找到匹配 c 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关
    •解决办法
    •SELECT c.val, d.val FROM c LEFT OUTER JOIN d
    ON (c.key=d.key AND d.ds='2009-07-07' AND c.ds='2009-07-07')


    LEFT SEMI JOIN
    •LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行

    •SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B);
    可以被重写为:
    SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)


    UNION ALL
    •用来合并多个select的查询结果,需要保证select中字段须一致

    •select_statement UNION ALL select_statement UNION ALL select_statement ...

  • 相关阅读:
    【转】Android之四大组件、六大布局、五大存储
    Android O 8.0 奥利奥
    安卓7.1新特性
    那些年我们踩过的坑,SQL 中的空值陷阱!
    8年经验面试官详解 Java 面试秘诀
    Github 第三方授权登录教程
    40个超有趣的Linux命令行彩蛋和游戏
    Synchronized锁在Spring事务管理下,为啥还线程不安全?
    Windows Server 2008 R2文件服务器升级到Windows Server 2016
    牛客练习赛61
  • 原文地址:https://www.cnblogs.com/camilla/p/8986460.html
Copyright © 2020-2023  润新知