• MySQL 之 索引进阶


    1、正确使用索引

    (1)、一 索引未命中

    ​ 并不是说创建了索引就一定会加快查询速度,若想利用索引达到预想的提高查询速度的效果,在添加索引时,必须注意以下问题:

    <1>、范围问题

    ​ 或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like

    大于号、小于号

    img

    不等于 号

    img

    between ...and...

    img

    like

    img

    <2>、 尽量选择区分度高的列作为索引

    ​ 区分度的公式是 count( distinct col ) / count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,这个比例有使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

    img

      # 分析原因
      我们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是一样的,我们稍后再搭理它)
    
    回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...
    
    而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。本例中就是这种极端的情况,name字段所有的值均为'egon'
    
    # 现在我们得出一个结论:为区分度低的字段建立索引,索引树的高度会很高,然而这具体会带来什么影响呢???
    
    # 1:如果条件是name='xxxx',那么肯定是可以第一时间判断出'xxxx'是不在索引树中的(因为树中所有的值均为'egon’),所以查询速度很快
    # 2:如果条件正好是name='egon',查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢
    

    <3>、索引列不能在条件中参与计算

    ​ 保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)

    img

    <4>、and / or

    # 1、and与or的逻辑
        条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
        条件1 or 条件2:只要有一个条件成立则最终结果就成立
    
    # 2、and的工作原理
        条件:
            a = 10 and b = 'xxx' and c > 3 and d =4
        索引:
            制作联合索引(d,a,b,c)
        工作原理:
            对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序
    
    # 3、or的工作原理
        条件:
            a = 10 or b = 'xxx' or c > 3 or d =4
        索引:
            制作联合索引(d,a,b,c)
        工作原理:
            对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d
    

    img

    在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询

    img

    img

    经过分析,在条件为name='egon' and gender='male' and id>333 and email='xxx'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率

    img

    <5>、最左前缀匹配原则

    ​ 非常重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

    img

    <6>、其他情况

    - 使用函数
        select * from tb1 where reverse(email) = 'egon';
                
    - 类型不一致
        如果列是字符串类型,传入条件是必须用引号引起来
        select * from tb1 where email = 999;
        
    # 排序条件为索引,则select字段必须也是索引字段,否则无法命中
    - order by
        select name from s1 order by email desc;
        当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
        select email from s1 order by email desc;
        特别的:如果对主键排序,则还是速度很快:
            select * from tb1 order by nid desc;
     
    - 组合索引最左前缀
        如果组合索引为:(name,email)
        name and email       -- 命中索引
        name                 -- 命中索引
        email                -- 未命中索引
    
    - count(1)或count(列)代替count(*)在mysql中没有差别了
    
    - create index xxxx  on tb(title(19)) # text类型,必须制定长度
    

    (2)、其他注意事项

    - 避免使用 select *
    - 使用 count(*)
    - 创建表时尽量使用 char 代替 varchar
    - 表的字段顺序固定长度的字段优先
    - 组合索引代替多个单列索引(由于mysql中每次只能使用一个索引,所以经常使用多个条件查询时更适合使用组合索引)
    - 尽量使用短索引
    - 使用连接(JOIN)来代替子查询(Sub-Queries)
    - 连表时注意条件类型需一致
    - 索引散列值(重复少)不适合建索引,例:性别不适合
    

    2、 联合索引与覆盖索引

    (1)、联合索引

    ​ 联合索引是指对表上的多个列合起来做一个索引。联合索引的创建方法与单个索引的创建方法一样,不同之处仅在于有多个索引列,如下

    mysql> create table t(
        -> a int,
        -> b int,
        -> primary key(a),
        -> key idx_a_b(a,b)
        -> );
    Query OK, 0 rows affected (0.11 sec)
    

    ​ 从本质上来说,联合索引就是一棵B+树,不同的是联合索引的键值的数量不是1,而是>=2。接着来讨论两个整型列组成的联合索引,假定两个键值得名称分别为a、b如图

    img

    ​ 可以看到这与之前看到的单个键的B+树并没有什么不同,键值都是排序的,通过叶子结点可以逻辑上顺序地读出所有数据,就上面的例子来说,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。

    ​ 因此,对于查询 select * from table where a=xxx and b=xxx, 显然是可以使用(a,b) 这个联合索引的,对于单个列a的查询 select * from table where a=xxx,也是可以使用(a,b)这个索引的。

    ​ 但对于b列的查询 select * from table where b=xxx,则不可以使用(a,b) 索引,其实不难发现原因,叶子节点上b的值为1、2、1、4、1、2显然不是排序的,因此对于b列的查询使用不到(a,b) 索引。

    ​ 联合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理。

    (2)、覆盖索引

    ​ InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。

    ​ 使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作。


    注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性。


    ​ 对于InnoDB存储引擎的辅助索引而言,由于其包含了主键信息,因此其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)。

    ​ 覆盖索引的另外一个好处是对某些统计问题而言的。基于上一小结创建的表buy_log,查询计划如下

    mysql> explain select count(*) from buy_log;
    +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
    |id|select_type|table  | type|possible_keys|key   |key_len|ref |rows|Extra      |
    +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
    | 1| SIMPLE    |buy_log|index| NULL        |userid| 4     |NULL|  7 |Using index|
    +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
    1 row in set (0.00 sec)
    
    # Using index代表覆盖索引
    

    ​ innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于buy_log表有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作,故优化器的选择如上key为userid辅助索引

    ​ 对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下

    # 联合索引userid_2(userid,buy_date),一般情况,按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引
    mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';
    +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
    |id|select_type| table |type |possible_keys| key    |key_len|ref |rows|Extra                   |
    +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
    | 1| SIMPLE    |buy_log|index| NULL        |userid_2| 8     |NULL|  7 |Using where; Using index|
    +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
    1 row in set (0.00 sec)
    
    # 合并索引
    mysql> explain select count(email) from index_t where   id = 1000000  or email='eva100000@oldboy';
    +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
    | id | select_type| table  | type                | possible_keys                              | key                   | key_len | ref    |rows | Extra                                                           |
    +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
    |  1 | SIMPLE      | index_t| index_merge | PRIMARY,email,ind_id,ind_email | PRIMARY,email | 4,51   |NULL|   2    |Using union(PRIMARY,email); Using where |
    +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
    1 row in set (0.01 sec)
    
  • 相关阅读:
    相关不是因果,哪又是啥?
    .NET Http请求
    .NET [MVC] 利用特性捕捉异常
    .NET WebAPI 利用特性捕捉异常
    .NET Core[MVC] 利用特性捕捉异常
    .NET Core 如何使用Session
    .NET CORE 使用Session报错:Session has not been configured for this application or request
    .NET Core Cache [MemoryCache]
    .NET CORE 设置cookie以及获取cookie
    webapi 控制json的字段(key)显示顺序
  • 原文地址:https://www.cnblogs.com/caiyongliang/p/13931234.html
Copyright © 2020-2023  润新知