• 算法的时间复杂度和空间复杂度


    算法的时间复杂度和空间复杂度

    博客说明

    文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!

    算法的时间复杂度

    时间频度

    一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度时间频度

    时间复杂度

    一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度

    计算时间复杂度的方法

    • 用常数1代替运行时间中的所有加法常数
    • 修改后的运行次数函数中,只保留最高阶项
    • 去除最高阶项的系数

    常见的时间复杂度

    常数阶O(1)

    无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

    int i = 1;
    int j = 2;
    i++;
    j++;
    

    上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

    对数阶O(log2n)
    int i = 1;
    while(i<n){
    	i = i * 2;
    }
    

    在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n)

    线性阶O(n)
    for(i = 1; i <= n; i++){
    	j = i;
    }
    

    这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

    线性对数阶O(nlog2n)
    for(m =1;m<n;m++){
     i = 1;
     while(i<n){
     	i = i * 2;
     }
    }
    

    线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

    平方阶O(n^2)
    for(j=1;j<n;j++){
      for(i=1;i<n;i++){
        m = j+i;
      }
    }
    

    平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)

    立方阶O(n^3)

    三层循环

    k次方阶O(n^k)

    k层循环

    指数阶O(2^n)

    常见的算法时间复杂度大小

    由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
    从图中可见,

    建议

    尽可能避免使用指数阶的算法

    平均时间复杂度和最坏时间复杂度

    • 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
    • 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
    • 平均时间复杂度和最坏时间复杂度是否一致,和算法有关

    算法的空间复杂度

    • 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
    • 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
    • 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

    感谢

    尚硅谷

    万能的网络

    以及勤劳的自己

    关注公众号: 归子莫,获取更多的资料,还有更长的学习计划

  • 相关阅读:
    【测试管理】如何简单的新增用例模块
    【自动化框架开发】node.js+selenium基于mac框架架设v1.0.1
    【自动化框架开发】node.js+selenium基于mac框架架设v1.0.0
    python--导入导出数据
    python爬虫--运用cookie模拟登录知乎
    python爬虫--连接数据库2
    python爬虫--模拟登录知乎
    python爬虫--连接数据库1
    python爬虫--储存本地
    python爬虫--解析网页几种方法之BeautifulSoup
  • 原文地址:https://www.cnblogs.com/guizimo/p/13196255.html
Copyright © 2020-2023  润新知