• 《Python数据可视化编程实战》


    《Python数据可视化编程实战》 

    绘制并定制化图表

    3.1 柱状图、线形图、堆积柱状图

    from matplotlib.pyplot import *

    x = [1,2,3,4,5,6]

    y = [3,4,6,7,3,2]

    #create new figure

    figure()

    #线

    subplot(2,3,1)

    plot(x,y)

    #柱状图

    subplot(2,3,2)

    bar(x,y)

    #水平柱状图

    subplot(2,3,3)

    barh(x,y)

    #叠加柱状图

    subplot(2,3,4)

    bar(x,y)

    y1=[2,3,4,5,6,7]

    bar(x,y1,bottom=y,color='r')

    #箱线图

    subplot(2,3,5)

    boxplot(x)

    #散点图

    subplot(2,3,6)

    scatter(x,y)

    show()

     

    3.2 箱线图和直方图

    from matplotlib.pyplot import *

    figure()

    dataset = [1,3,5,7,8,3,4,5,6,7,1,2,34,3,4,4,5,6,3,2,2,3,4,5,6,7,4,3]

    subplot(1,2,1)

    boxplot(dataset, vert=False)

    subplot(1,2,2)

    #直方图

    hist(dataset)

    show()

     

    3.3 正弦余弦及图标

    from  matplotlib.pyplot import *

    import numpy as np

    x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

    y = np.cos(x)

    y1= np.sin(x)

    plot(x,y)

    plot(x,y1)

    #图表名称

    title("Functions $sin$ and $cos$")

    #x,y轴坐标范围

    xlim(-3,3)

    ylim(-1,1)

    #坐标上刻度

    xticks([-np.pi, -np.pi/2,0,np.pi/2,np.pi],

           [r'$-pi$', r'$-pi/2$', r'$0$', r'$+pi/2$',r'$+pi$'])

    yticks([-1, 0, 1],

           [r'$-1$',r'$0$',r'$+1$' ])

    #网格

    grid()

    show()

     

    3.4 设置图表的线型、属性和格式化字符串

    from  matplotlib.pyplot import *

    import numpy as np

    x = np.linspace(-np.pi, np.pi, 256, endpoint=True)

    y = np.cos(x)

    y1= np.sin(x)

    #线段颜色,线条风格,线条宽度,线条标记,标记的边缘颜色,标记边缘宽度,标记内颜色,标记大小

    plot([1,2],c='r',ls='-',lw=2, marker='D', mec='g',mew=2, mfc='b',ms=30)

    plot(x,y1)

    #图表名称

    title("Functions $sin$ and $cos$")

    #x,y轴坐标范围

    xlim(-3,3)

    ylim(-1,4)

    #坐标上刻度

    xticks([-np.pi, -np.pi/2,0,np.pi/2,np.pi],

           [r'$-pi$', r'$-pi/2$', r'$0$', r'$+pi/2$',r'$+pi$'])

    yticks([-1, 0, 1],

           [r'$-1$',r'$0$',r'$+1$' ])

    grid()

    show()

     

    3.5 设置刻度、时间刻度标签、网格

    import matplotlib.pyplot as mpl

    from pylab import *

    import datetime

    import numpy as np

    fig = figure()

    ax = gca()

    # 时间区间

    start = datetime.datetime(2017,11,11)

    stop = datetime.datetime(2017,11,30)

    delta = datetime.timedelta(days =1)

    dates = mpl.dates.drange(start,stop,delta)

    values = np.random.rand(len(dates))

    ax.plot_date(dates, values, ls='-')

    date_format = mpl.dates.DateFormatter('%Y-%m-%d')

    ax.xaxis.set_major_formatter(date_format)

    fig.autofmt_xdate()

    show()

     

    3.6 添加图例和注释

    from matplotlib.pyplot import *

    import numpy as np

    x1 = np.random.normal(30, 2,100)

    plot(x1, label='plot')

    #图例

    #图标的起始位置,宽度,高度 归一化坐标

    #loc 可选,为了图标不覆盖图

    #ncol 图例个数

    #图例平铺

    #坐标轴和图例边界之间的间距

    legend(bbox_to_anchor=(0., 1.02, 1., .102),loc = 4,

           ncol=1, mode="expand",borderaxespad=0.1)

    #注解

    # Import data 注释

    #(55,30) 要关注的点

    #xycoords = ‘data’ 注释和数据使用相同坐标系

    #xytest 注释的位置

    #arrowprops注释用的箭头

    annotate("Import data", (55,30), xycoords='data',

                   xytext=(5,35),

                   arrowprops=dict(arrowstyle='->'))

    show()

     

    3.7 直方图、饼图

    直方图

    import matplotlib.pyplot as plt

    import numpy as np

    mu=100

    sigma = 15

    x = np.random.normal(mu, sigma, 10000)

    ax = plt.gca()

    ax.hist(x,bins=30, color='g')

    ax.set_xlabel('v')

    ax.set_ylabel('f')

    ax.set_title(r'$mathrm{Histogram:} mu=%d, sigma=%d$' % (mu,sigma))

    plt.show()

     

    饼图

    from pylab import *

    figure(1, figsize=(6,6))

    ax = axes([0.1,0.1,0.8,0.8])

    labels ='spring','summer','autumn','winter'

    x=[15,30,45,10]

    #explode=(0.1,0.2,0.1,0.1)

    explode=(0.1,0,0,0)

    pie(x, explode=explode, labels=labels, autopct='%1.1f%%', startangle=67)

    title('rainy days by season')

    show()

     

    3.8 设置坐标轴

    import matplotlib.pyplot as plt

    import numpy as np

    x = np.linspace(-np.pi, np.pi, 500, endpoint=True)

    y = np.sin(x)

    plt.plot(x,y)

    ax = plt.gca()

    #top bottom left right 四条线段框成的

    #上下边界颜色

    ax.spines['right'].set_color('none')

    ax.spines['top'].set_color('r')

    #坐标轴位置

    ax.spines['bottom'].set_position(('data', 0))

    ax.spines['left'].set_position(('data', 0))

    #坐标轴上刻度位置

    ax.xaxis.set_ticks_position('bottom')

    ax.yaxis.set_ticks_position('left')

    plt.grid()

    plt.show()

     

    3.9 误差条形图

    import matplotlib.pyplot as plt

    import numpy as np

    x = np.arange(0,10,1)

    y = np.log(x)

    xe = 0.1 * np.abs(np.random.randn(len(y)))

    plt.bar(x,y,yerr=xe,width=0.4,align='center',

            ecolor='r',color='cyan',label='experimert')

    plt.xlabel('x')

    plt.ylabel('y')

    plt.title('measurements')

    plt.legend(loc='upper left')  # 这种图例用法更直接

    plt.show()

     

    3.10 带填充区域的图表

    import matplotlib.pyplot as plt

    from matplotlib.pyplot import *

    import numpy as np

    x = np.arange(0,2,0.01)

    y1 = np.sin(2*np.pi*x)

    y2=1.2*np.sin(4*np.pi*x)

    fig = figure()

    ax = gca()

    ax.plot(x,y1,x,y2,color='b')

    ax.fill_between(x,y1,y2,where = y2>y1, facecolor='g',interpolate=True)

    ax.fill_between(x,y1,y2,where = y2<y1, facecolor='darkblue',interpolate=True)

    ax.set_title('filled between')

    show()

     

    3.11 散点图

    import matplotlib.pyplot as plt

    import numpy as np

    x = np.random.randn(1000)

    y1 = np.random.randn(len(x))

    y2 = 1.8 + np.exp(x)

    ax1 = plt.subplot(1,2,1)

    ax1.scatter(x,y1,color='r',alpha=.3,edgecolors='white',label='no correl')

    plt.xlabel('no correlation')

    plt.grid(True)

    plt.legend()

    ax1 = plt.subplot(1,2,2)

    #alpha透明度 edgecolors边缘颜色 label图例(结合legend使用)

    plt.scatter(x,y2,color='g',alpha=.3,edgecolors='gray',label='correl')

    plt.xlabel('correlation')

    plt.grid(True)

    plt.legend()

    plt.show()

     

    第四章 更多图表和定制化

    4.4 向图表添加数据表

    from matplotlib.pyplot import *

    import matplotlib.pyplot as plt

    import numpy as np

    plt.figure()

    ax = plt.gca()

    y = np.random.randn(9)

    col_labels = ['c1','c2','c3']

    row_labels = ['r1','r2','r3']

    table_vals = [[11,12,13],[21,22,23],[31,32,33]]

    row_colors = ['r','g','b']

    my_table = plt.table(cellText=table_vals,

                         colWidths=[0.1]*3,

                         rowLabels=row_labels,

                         colLabels=col_labels,

                         rowColours=row_colors,

                         loc='upper right')

    plt.plot(y)

    plt,show()

     

    4.5 使用subplots

    from matplotlib.pyplot import *

    import matplotlib.pyplot as plt

    import numpy as np

    plt.figure(0)

    #子图的分割规划

    a1 = plt.subplot2grid((3,3),(0,0),colspan=3)

    a2 = plt.subplot2grid((3,3),(1,0),colspan=2)

    a3 = plt.subplot2grid((3,3),(1,2),colspan=1)

    a4 = plt.subplot2grid((3,3),(2,0),colspan=1)

    a5 = plt.subplot2grid((3,3),(2,1),colspan=2)

    all_axex = plt.gcf().axes

    for ax in all_axex:

        for ticklabel in ax.get_xticklabels() + ax.get_yticklabels():

            ticklabel.set_fontsize(10)

    plt.suptitle("Demo")

    plt.show()

     

    4.6 定制化网格

    grid();

    color、linestyle 、linewidth等参数可设

    4.7 创建等高线图

    基于矩阵

    等高线标签

    等高线疏密

    import matplotlib.pyplot as plt

    import numpy as np

    import matplotlib as mpl

    def process_signals(x,y):

        return (1-(x**2 + y**2))*np.exp(-y**3/3)

    x = np.arange(-1.5, 1.5, 0.1)

    y = np.arange(-1.5,1.5,0.1)

    X,Y = np.meshgrid(x,y)

    Z = process_signals(X,Y)

    N = np.arange(-1, 1.5, 0.3) #作为等值线的间隔

    CS = plt.contour(Z, N, linewidths = 2,cmap = mpl.cm.jet)

    plt.clabel(CS, inline=True, fmt='%1.1f', fontsize=10) #等值线标签

    plt.colorbar(CS)

    plt.show()

     

    4.8 填充图表底层区域

    from matplotlib.pyplot import *

    import matplotlib.pyplot as plt

    import numpy as np

    from math import sqrt

    t = range(1000)

    y = [sqrt(i) for i in t]

    plt.plot(t,y,color='r',lw=2)

    plt.fill_between(t,y,color='y')

    plt.show()

     

    第五章 3D可视化图表

    在选择3D之前最好慎重考虑,因为3D可视化比2D更加让人感到迷惑。

    5.2 3D柱状图

    import matplotlib.pyplot as plt

    import numpy as np

    import matplotlib as mpl

    import random

    import matplotlib.dates as mdates

    from mpl_toolkits.mplot3d import Axes3D

    mpl.rcParams['font.size'] =10

    fig = plt.figure()

    ax = fig.add_subplot(111,projection='3d')

    for z in [2015,2016,2017]:

        xs = range(1,13)

        ys = 1000 * np.random.rand(12)

        color = plt.cm.Set2(random.choice(range(plt.cm.Set2.N)))

        ax.bar(xs,ys,zs=z,zdir='y',color=color,alpha=0.8)

    ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))

    ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))

    ax.set_xlabel('M')

    ax.set_ylabel('Y')

    ax.set_zlabel('Sales')

    plt.show()

     

    5.3 曲面图

    import matplotlib.pyplot as plt

    import numpy as np

    import matplotlib as mpl

    import random

    from mpl_toolkits.mplot3d import Axes3D

    from matplotlib import cm

    fig = plt.figure()

    ax = fig.add_subplot(111,projection='3d')

    n_angles = 36

    n_radii = 8

    radii = np.linspace(0.125, 1.0, n_radii)

    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)

    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)

    x = np.append(0, (radii*np.cos(angles)).flatten())

    y = np.append(0, (radii*np.sin(angles)).flatten())

    z = np.sin(-x*y)

    ax.plot_trisurf(x,y,z,cmap=cm.jet, lw=0.2)

    plt.show()

     

    5.4 3D直方图

    import matplotlib.pyplot as plt

    import numpy as np

    import matplotlib as mpl

    import random

    from mpl_toolkits.mplot3d import Axes3D

    mpl.rcParams['font.size'] =10

    fig = plt.figure()

    ax = fig.add_subplot(111,projection='3d')

    samples = 25

    x = np.random.normal(5,1,samples)   #x上正态分布

    y = np.random.normal(3, .5, samples) #y上正态分布

    #xy平面上,按照10*10的网格划分,落在网格内个数hist,x划分边界、y划分边界

    hist, xedges, yedges = np.histogram2d(x,y,bins=10)

    elements = (len(xedges)-1)*(len(yedges)-1)

    xpos,ypos = np.meshgrid(xedges[:-1]+.25,yedges[:-1]+.25)

    xpos = xpos.flatten() #多维数组变为一维数组

    ypos = ypos.flatten()

    zpos = np.zeros(elements)

    dx = .1 * np.ones_like(zpos) #zpos一致的全1数组

    dy = dx.copy()

    dz = hist.flatten()

    #每个立体以(xpos,ypos,zpos)为左下角,以(xpos+dx,ypos+dy,zpos+dz)为右上角

    ax.bar3d(xpos,ypos,zpos,dx,dy,dz,color='b',alpha=0.4)

    plt.show()

     

    第六章 用图像和地图绘制图表

    6.3 绘制带图像的图表

    6.4 图像图表显示

    第七章 使用正确的图表理解数据

    为什么要以这种方式展示数据?

    7.2 对数图

    import matplotlib.pyplot as plt

    import numpy as np

    x = np.linspace(1,10)

    y = [10**e1 for e1 in x]

    z = [2*e2 for e2 in x]

    fig = plt.figure(figsize=(10, 8))

    ax1 = fig.add_subplot(2,2,1)

    ax1.plot(x, y, color='b')

    ax1.set_yscale('log')

    #两个坐标轴和主次刻度打开网格显示

    plt.grid(b=True, which='both', axis='both')

    ax2 = fig.add_subplot(2,2,2)

    ax2.plot(x,y,color='r')

    ax2.set_yscale('linear')

    plt.grid(b=True, which='both', axis='both')

    ax3 = fig.add_subplot(2,2,3)

    ax3.plot(x,z,color='g')

    ax3.set_yscale('log')

    plt.grid(b=True, which='both', axis='both')

    ax4 = fig.add_subplot(2,2,4)

    ax4.plot(x,z,color='magenta')

    ax4.set_yscale('linear')

    plt.grid(b=True, which='both', axis='both')

    plt.show()

     

    7.3 创建火柴杆图

    import matplotlib.pyplot as plt

    import numpy as np

    x = np.linspace(1,10)

    y = np.sin(x+1) + np.cos(x**2)

    bottom = -0.1

    hold = False

    label = "delta"

    markerline, stemlines, baseline = plt.stem(x, y, bottom=bottom,label=label, hold=hold)

    plt.setp(markerline, color='r', marker= 'o')

    plt.setp(stemlines,color='b', linestyle=':')

    plt.setp(baseline, color='g',lw=1, linestyle='-')

    plt.legend()

    plt.show()

     

    7.4 矢量图

    7.5 使用颜色表

    颜色要注意观察者会对颜色和颜色要表达的信息做一定的假设。不要做不相关的颜色映射,比如将财务数据映射到表示温度的颜色上去。

    如果数据没有与红绿有强关联时,尽可能不要使用红绿两种颜色。

    import matplotlib.pyplot as plt

    import numpy as np

    import matplotlib as mpl

    red_yellow_green = ['#d73027','#f46d43','#fdae61']

    sample_size = 1000

    fig,ax = plt.subplots(1)

    for i in range(3):

        y = np.random.normal(size=sample_size).cumsum()

        x = np.arange(sample_size)

        ax.scatter(x, y, label=str(i), lw=0.1, edgecolors='grey',facecolor=red_yellow_green[i])

        

    plt.legend()

    plt.show()

     

    7.7 使用散点图和直方图

    7.8 两个变量间的互相关图形

    7.9 自相关的重要性

    第八章 更多的matplotlib知识

    8.6 使用文本和字体属性

    函数:

    test: 在指定位置添加文本

    xlabel:x轴标签

    ylabel:y轴标签

    title:设置坐标轴的标题

    suptitle:为图表添加一个居中的标题

    figtest:在图表任意位置添加文本,归一化坐标

    属性:

    family:字体类型

    size/fontsize:字体大小

    style/fontstyle:字体风格

    variant:字体变体形式

    weight/fontweight:粗细

    stretch/fontstretch:拉伸

    fontproperties:

    8.7 用LaTeX渲染文本

    LaTeX 是一个用于生成科学技术文档的高质量的排版系统,已经是事实上的科学排版或出版物的标准。

    帮助文档:http://latex-project.org/

    import matplotlib.pyplot as plt

    import numpy as np

    t = np.arange(0.0, 1.0+0.01, 0.01)

    s = np.cos(4 * np.pi *t) * np.sin(np.pi*t/4) + 2

    #plt.rc('text', usetex=True)  #未安装Latex

    plt.rc('font', **{'family':'sans-serif','sans-serif':['Helvetica'],'size':16})

    plt.plot(t, s, alpha=0.55)

    plt.annotate(r'$cos(4 imes pi imes {t}) imes sin(pi imes frac{t}{4}) + 2$',xy=(.9, 2.2), xytext=(.5, 2.6),color='r', arrowprops={'arrowstyle':'->'})

    plt.text(.01, 2.7, r'$alpha, eta, gamma, Gamma, pi, Pi, phi, varphi, Phi$')

    plt.xlabel(r'time (s)')

    plt.ylabel(r'y values(W)')

    plt.title(r"Hello python visualization.")

    plt.subplots_adjust(top=0.8)

    plt.show()

     

     结语:本篇文档是基于书籍《Python数据可视化编程实战》学习总结。

  • 相关阅读:
    推荐一款idea 翻译插件 ECTranslation
    idea 执行maven 命令
    Future Clalback使用案例
    newCachedThreadPool使用案例
    线程池 原理学习笔记
    使用curator框架简单操作zookeeper 学习笔记
    mongo aggregate 用法记录
    ReentrantLock 学习笔记
    VUE:过渡&动画
    VUE:生命周期
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/9516069.html
Copyright © 2020-2023  润新知