Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 45191 | Accepted: 19318 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
Source
问题分析:
N 个物品每个物品有价值v[i],重量w[i], 给定背包最大承重M,求背包能够装载的最大价值。每个物品只有放入背包和不放入背包两种选择。
这是典型的0-1背包问题。
代码的时间上限是O(nm), 对于每个物品i, 它所要遍历的整数区间都是[ci, m]
#include<iostream> #include<algorithm> #include<cstring> #include<string> #include<cmath> using namespace std; int dp[30000]; int w[30000]; int v[30000]; int main() { int n,m; cin>>n>>m; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) { cin>>w[i]>>v[i]; } for(int i=1;i<=n;i++) { for(int j=m;j>=w[i];j--)//要倒着推过来,因为dp【j】是滚动数组 { dp[j]=max(dp[j],dp[j-w[i]]+v[i]); } } cout<<dp[m]; return 0; }