• python 之 numpy 总结


    参考链接:莫烦python https://mofanpy.com/tutorials/data-manipulation/np-pd/

    import numpy as np

    numpy 属性

    array = np.array([[1,2,3],
                     [2,3,4]])
    print(array)
    print("number of dim:"array.ndim)
    print("shape",array.shape)
    print("size",array.size) # 有多少个元素
    [[1 2 3]
     [2 3 4]]
    number of dim: 2
    shape (2, 3)
    size 6

    创建 array

    a = np.array([2,23,4])
    print(a)
    [ 2 23  4]
    a = np.array([2,23,4],dtype=np.int64) #int float16 32 64
    print(a.dtype)
    int64
    a = np.arange(10,20,2)  #range类似
    print(a)
    [10 12 14 16 18]
    a = np.arange(12).reshape((3,4))
    print(a)
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]]
    # 定义矩阵
    a = np.array([[3,4,6],
                 [7,1,8]])
    print(a)
    [[3 4 6]
     [7 1 8]]
    a = np.zeros((3,4)) #ones empty
    print(a)
    [[0. 0. 0. 0.]
     [0. 0. 0. 0.]
     [0. 0. 0. 0.]]
    #生成线段
    a = np.linspace(1,10,5) #5段
    print(a)
    [ 1.    3.25  5.5   7.75 10.  ]
    a = np.linspace(1,10,6).reshape((2,3))
    print(a)
    [[ 1.   2.8  4.6]
     [ 6.4  8.2 10. ]]

    numpy 基础运算

    a = np.array([10,20,30,40])
    b = np.arange(4)
    print(a,b)
    c = a - b # + 逐个相加减法
    print(c)
    [10 20 30 40] [0 1 2 3]
    [10 19 28 37]
    a = np.array([10,20,30,40])
    b = np.arange(4)
    print(a,b)  # / 逐个相乘除法
    c = a * b
    print(c)
    [10 20 30 40] [0 1 2 3]
    [  0  20  60 120]
    b = np.arange(4)
    print(b)  # / 逐个相乘除法
    c = b ** 2 # 平方是 **
    print(c)
    [0 1 2 3]
    [0 1 4 9]
    a = np.array([10,20,30,40])
    c = 10*np.sin(a) # 每个值sin以后再*10  cos tan
    print(c)
    [-5.44021111  9.12945251 -9.88031624  7.4511316 ]
    np.sin(np.pi/6) # 1/2
    0.49999999999999994
    b = np.arange(4)
    print(b)http://localhost:8888/notebooks/LearnArray.ipynb#%E7%9F%A9%E9%98%B5%E8%BF%90%E7%AE%97
    print(b<3) # == >=
    [0 1 2 3]
    [ True  True  True False]

    矩阵运算

    a = np.array([[1,1],
                 [0,1]])
    b = np.arange(4).reshape((2,2))
    print(a)
    print(b)
    
    print("逐个相乘")
    print(a*b) #逐个相乘
    
    print("矩阵相乘")
    print(np.dot(a,b)) #矩阵相乘
    print(a.dot(b))
    [[1 1]
     [0 1]]
    [[0 1]
     [2 3]]
    逐个相乘
    [[0 1]
     [0 3]]
    矩阵相乘
    [[2 4]
     [2 3]]
    [[2 4]
     [2 3]]
    a = np.random.random((2,4))
    print(a)
    print(np.sum(a))
    print(np.min(a))
    print(np.max(a))
    [[0.75043705 0.64915184 0.90982739 0.95481296]
     [0.10239917 0.05245467 0.05292892 0.15421724]]
    3.6262292489095636
    0.05245467473374732
    0.9548129643015092
    a = np.random.random((2,4))
    print(a,end="
    
    ")
    print(np.sum(a,axis=1)) #axis=1为行
    [[0.24422292 0.75909185 0.77952272 0.45213038]
     [0.14313807 0.24731068 0.14017471 0.99728501]]
    
    [2.23496787 1.52790848]
    print(np.min(a,axis=0)) #axis=0为列
    [0.14313807 0.24731068 0.14017471 0.45213038]

    矩阵运算2

    A = np.arange(2,14).reshape((3,4))
    print(A,end="
    
    ")
    
    print(np.argmin(A)) #最小值的索引
    print(np.argmax(A)) #最大值的索引
    [[ 2  3  4  5]
     [ 6  7  8  9]
     [10 11 12 13]]
    
    0
    11
    print(A.mean()) #np.mean(A)
    print("平均数",np.average(A)) #不能 A.average(A)
    print("中位数",np.median(A))
    7.5
    平均数 7.5
    中位数 7.5
    print("逐步累加 cumsum",np.cumsum(A))
    print("相邻差 diff",np.diff(A))
    逐步累加 cumsum [ 2  5  9 14 20 27 35 44 54 65 77 90]
    相邻差 diff [[1 1 1]
     [1 1 1]
     [1 1 1]]
    print("非0的数",np.nonzero(A)) #先输出行数,在输出列数
    非0的数 (array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
    A = np.arange(14,2,-1).reshape((3,4))
    print(A,end="
    
    ")
    print(np.sort(A)) #逐行排序
    [[14 13 12 11]
     [10  9  8  7]
     [ 6  5  4  3]]
    
    [[11 12 13 14]
     [ 7  8  9 10]
     [ 3  4  5  6]]
    A = np.arange(14,2,-1).reshape((3,4))
    print(A,end="
    
    ")
    print(np.transpose(A))
    print(A.T)
    print((A.T).dot(A)) #实对称
    [[14 13 12 11]
     [10  9  8  7]
     [ 6  5  4  3]]
    
    [[14 10  6]
     [13  9  5]
     [12  8  4]
     [11  7  3]]
    [[14 10  6]
     [13  9  5]
     [12  8  4]
     [11  7  3]]
    [[332 302 272 242]
     [302 275 248 221]
     [272 248 224 200]
     [242 221 200 179]]
    A = np.arange(14,2,-1).reshape((3,4))
    print(A,end="
    
    ")
    print(np.clip(A,5,11)) #所有小于 5 的数变成 5,所有大于 11 的数变成 11
    [[14 13 12 11]
     [10  9  8  7]
     [ 6  5  4  3]]
    
    [[11 11 11 11]
     [10  9  8  7]
     [ 6  5  5  5]]
    A = np.arange(14,2,-1).reshape((3,4))
    print(A,end="
    
    ")
    print("计算每列平均数",np.mean(A,axis=0)) # 计算每列平均数
    print("计算每行平均数",np.mean(A,axis=1)) # 计算每行平均数
    [[14 13 12 11]
     [10  9  8  7]
     [ 6  5  4  3]]
    
    计算每列平均数 [10.  9.  8.  7.]
    计算每行平均数 [12.5  8.5  4.5]

    numpy索引

    import numpy as np
    
    A = np.arange(3,15)
    print(A)
    print(A[3])
    [ 3  4  5  6  7  8  9 10 11 12 13 14]
    6
    A = np.arange(3,15).reshape(3,4)
    print(A)
    print(A[1][1])
    print(A[2,1])
    [[ 3  4  5  6]
     [ 7  8  9 10]
     [11 12 13 14]]
    8
    12
    print(A[2,:])
    print(A[:,1])
    print(A[0,1:4])
    [11 12 13 14]
    [ 4  8 12]
    [4 5 6
    # 输出列,用T,妙啊
    for col in A.T:
        print(col)
    [ 3  7 11]
    [ 4  8 12]
    [ 5  9 13]
    [ 6 10 14]
    # 输出矩阵中的每一个值
    print(A.flatten())
    for item in A.flat:
        print(item)
    [ 3  4  5  6  7  8  9 10 11 12 13 14]
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14

    numpy array 合并

    A = np.array([1,1,1])
    B = np.array([2,2,2])
    
    C = np.vstack((A,B))
    print(C)
    print(A.shape,C.shape)
    [[1 1 1]
     [2 2 2]]
    (3,) (2, 3)
    D = np.hstack((A,B))
    print(D)
    print(A.shape,D.shape)
    [1 1 1 2 2 2]
    (3,) (6,)
    # 变成 [[1],[1],[1]]
    E = A[np.newaxis,:] # 在行上加了一个维度
    print(E) 
    print(E.shape,end="
    
    ") 
    
    F = A[:,np.newaxis]# 在列上加了一个维度
    print(F)
    print(F.shape) 
    [[1 1 1]]
    (1, 3)
    
    [[1]
     [1]
     [1]]
    (3, 1)
    A = np.array([1,1,1])[:,np.newaxis]
    print(A,end="
    
    ")
    B = np.array([2,2,2])[:,np.newaxis]
    print(B,end="
    
    ")
    G = np.hstack((A,B))
    print(G)
    [[1]
     [1]
     [1]]
    
    [[2]
     [2]
     [2]]
    
    [[1 2]
     [1 2]
     [1 2]]
    C = np.concatenate((A,B,B,A),axis=0) #上下合并
    print(C,end="
    
    ")
    C = np.concatenate((A,B,B,A),axis=1) #左右合并
    print(C)
    [[1]
     [1]
     [1]
     [2]
     [2]
     [2]
     [2]
     [2]
     [2]
     [1]
     [1]
     [1]]
    
    [[1 2 2 1]
     [1 2 2 1]
     [1 2 2 1]]

    numpy array 分割

    A = np.arange(12).reshape((3,4))
    print(A)
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]]
    print(np.split(A,2,axis=1)) #等分
    [array([[0, 1],
           [4, 5],
           [8, 9]]), array([[ 2,  3],
           [ 6,  7],
           [10, 11]])]
    print(np.split(A,3,axis=0))
    [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
    print(np.array_split(A,3,axis=1)) #不等项分割
    [array([[0, 1],
           [4, 5],
           [8, 9]]), array([[ 2],
           [ 6],
           [10]]), array([[ 3],
           [ 7],
           [11]])]
    
    print(np.vsplit(A,3))
    print(np.hsplit(A,2))
    [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
    [array([[0, 1],
           [4, 5],
           [8, 9]]), array([[ 2,  3],
           [ 6,  7],
           [10, 11]])]

    numpy 深拷贝和浅拷贝

    a = np.arange(4)
    b = a
    c = b
    
    print(a)
    print(b)
    a[0] = 11
    print(a)
    print(b) # b也跟着变了,用的是同一个内存地址
    print(c is a)
    [0 1 2 3]
    [0 1 2 3]
    [11  1  2  3]
    [11  1  2  3]
    True
    b = a.copy() # 深拷贝
    print(a)
    print(b)
    
    a[0]=88
    print(a)
    print(b)
    [11  1  2  3]
    [11  1  2  3]
    [88  1  2  3]
    [11  1  2  3]
  • 相关阅读:
    python爬虫常见面试题(二)
    python爬虫常见面试题(一)
    回首2018,展望2019
    PDF编辑软件PDFGuru
    打字机NoisyTyper
    文本标注系统
    logstash配置
    服务器上安装python3
    scrapy自调度方案
    前端项目配置nginx配置
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/15152789.html
Copyright © 2020-2023  润新知