简介
所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。
即a²+b²=c²,a,b,c∈N
第一类型
当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
……
这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。
第二类型
2、当a为大于4的偶数2n时,b=n²-1, c=n²+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
……
所以如果你只想得到互质的数组,这条可以改成,对于a=4n (大于等于2), b=4n²-1, c=4n²+1,例如:
n=2时(a,b,c)=(8,15,17)
n=3时(a,b,c)=(12,35,37)
n=4时(a,b,c)=(16,63,65)