• Dropping tests


    题目链接:http://poj.org/problem?id=2976

    Dropping tests
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 20830   Accepted: 7052

    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    Hint

    To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

    题目大意:输入N K  下面有两行 每行有N个数  第一行代表N个a[i]   第二行代表N个b[i]   问你按照上面的公式算  去掉K个  得到的最大结果是多少

    思路:自己并没有想到怎么二分 ,自己想到的是怎么贪心,但是感觉不行,就没去尝试了,其实想的到二分答案,但是怎么判断答案是否成立就没有想到了,这里用到的一种思想,分析表达式

    以前我都是看到表达式就看一下的,从来没有给它仔细化简分析啥的  这一题算是一个教训吧!  那么下面看一下这个表达式到底怎么回事

     令r = ∑a[i] * x[i] / (b[i] * x[i])  则必然∑a[i] * x[i] - ∑b[i] * x[i] * r= 0;(条件1)并且任意的 ∑a[i] * x[i] - ∑b[i] * x[i] * max(r) <= 0  (条件2,只有当∑a[i] * x[i] / (b[i] * x[i]) = max(r) 条件2中等号才成立)然后就可以枚举r , 对枚举的r, 求Q(r) = ∑a[i] * x[i] - ∑b[i] * x[i] * r  的最大值,  为什么要求最大值呢?  因为我们之前知道了条件2,所以当我们枚举到r为max(r)的值时,显然对于所有的情况Q(r)都会小于等于0,并且Q(r)的最大值一定是0.而我们求最大值的目的就是寻找Q(r)=0的可能性,这样就满足了条件1,最后就是枚举使得Q(r)恰好等于0时就找到了max(r)。而如果能Q(r)>0 说明该r值是偏小的,并且可能存在Q(r)=0,而Q(r)<0的话,很明显是r值偏大的,因为max(r)都是使Q(r)最大值为0,说明不可能存在Q(r)=0了。
    注意:二分真的很气人啊,这题用了以前经常用的二分板子,竟然错了。。。  真的不明白为啥,就是二分最后的结果是l  还是r   应该是这题有点问题,下面wa的代码也给出来吧

    wa的:

    #include<iostream>
    #include<algorithm>
    #include<stdio.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1000+5;
    const double inf=1e15;
    const double eps=1e-7;
    int N,K;
    ll a[maxn],b[maxn];
    double c[maxn];
    bool cmp(const double x,const double y)
    {
        return x>y;
    }
    bool judge(double mid)
    {
        for(int i=0;i<N;i++)//找到最优的解
        {
            c[i]=a[i]-mid*b[i];
        }
        sort(c,c+N,cmp);
        double sum=0;
        for(int i=0;i<N-K;i++) sum+=c[i];
        return sum>=0;
    }
    int main()
    {
        while(cin>>N>>K)
        {
            if(N==0&&K==0) break;
            for(int i=0;i<N;i++) cin>>a[i];
            for(int i=0;i<N;i++) cin>>b[i];
            double l=0,r=inf;
            double ans;
    
            while(r-l>=eps)
            {
                double mid=(r+l)/2;
                //cout<<mid<<endl;
                if(judge(mid))
                {
                    ans=mid;
                    l=mid+eps;
                }
                else r=mid;
                //cout<<"ans: "<<ans<<endl;
                //cout<<"l: "<<l<<endl;
                //cout<<"r: "<<r<<endl;
           }
            printf("%.0lf
    ", ans * 100);
    
    /*
            double mid;
            while(r-l>=eps)
            {
    
                mid=(l+r)/2;
                if(judge(mid))
                    l=mid;
                else r=mid;
                cout<<"l: "<<l<<endl;
                cout<<"r: "<<r<<endl;
            }
            printf("%.0lf
    ",r*100);
            //printf("%.0lf
    ", ans * 100);
            //cout<<(int)(ans*100+0.5)<<endl;
    */
        }
        return 0;
    }
    
    /*
    */

    ac的:

    #include<iostream>
    #include<algorithm>
    #include<stdio.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1000+5;
    const double inf=1e15;
    const double eps=1e-7;
    int N,K;
    ll a[maxn],b[maxn];
    double c[maxn];
    bool cmp(const double x,const double y)
    {
        return x>y;
    }
    bool judge(double mid)
    {
        for(int i=0;i<N;i++)//找到最优的解
        {
            c[i]=a[i]-mid*b[i];
        }
        sort(c,c+N,cmp);
        double sum=0;
        for(int i=0;i<N-K;i++) sum+=c[i];
        return sum>=0;
    }
    int main()
    {
        while(cin>>N>>K)
        {
            if(N==0&&K==0) break;
            for(int i=0;i<N;i++) cin>>a[i];
            for(int i=0;i<N;i++) cin>>b[i];
            double l=0,r=inf;
            double ans;
    
            while(r-l>=eps)
            {
                double mid=(r+l)/2;
                //cout<<mid<<endl;
                if(judge(mid))
                {
                    ans=mid;
                    l=mid+eps;
                }
                else r=mid;
                //cout<<"ans: "<<ans<<endl;
                //cout<<"l: "<<l<<endl;
                //cout<<"r: "<<r<<endl;
           }
            printf("%.0lf
    ", r * 100);
    
    /*
            double mid;
            while(r-l>=eps)
            {
    
                mid=(l+r)/2;
                if(judge(mid))
                    l=mid;
                else r=mid;
                cout<<"l: "<<l<<endl;
                cout<<"r: "<<r<<endl;
            }
            printf("%.0lf
    ",r*100);
            //printf("%.0lf
    ", ans * 100);
            //cout<<(int)(ans*100+0.5)<<endl;
    */
        }
        return 0;
    }
    
    /*
    */
    当初的梦想实现了吗,事到如今只好放弃吗~
  • 相关阅读:
    flutter开发dart基本数据类型与java、kotlin、oc、swift对照表
    flutter输入框TextField设置高度以及背景色等样式的正确姿势
    flutter开发tab页面嵌套滚动的最简洁实现方式
    flutter开发自定义ExpandListView分组列表组件
    RedisUtil-redisTemplate-setNX
    数据库无限层级分类设计
    魔方
    CountDownLatch在SpringBoot中配合@Async使用
    会话刷新Token校验流程
    Mybatis 夺命十八问,顶不住了!
  • 原文地址:https://www.cnblogs.com/caijiaming/p/10387166.html
Copyright © 2020-2023  润新知