无锁编程 / lock-free / 非阻塞同步
无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。
实现非阻塞同步的方案称为“无锁编程算法”( Non-blocking algorithm)。
lock-free是目前最常见的无锁编程的实现级别(一共三种级别)。
为什么要 Non-blocking sync ?
使用lock实现线程同步有很多缺点:
* 产生竞争时,线程被阻塞等待,无法做到线程实时响应。
* dead lock。
* live lock。
* 优先级翻转。
* 使用不当,造成性能下降。
如果在不使用 lock 的情况下,实现变量同步,那就会避免很多问题。虽然目前来看,无锁编程并不能替代 lock。
实现级别
非同步阻塞的实现可以分成三个级别:wait-free/lock-free/obstruction-free。
wait-free
是最理想的模式,整个操作保证每个线程在有限步骤下完成。
保证系统级吞吐(system-wide throughput)以及无线程饥饿。
截止2011年,没有多少具体的实现。即使实现了,也需要依赖于具体CPU。
lock-free
允许个别线程饥饿,但保证系统级吞吐。
确保至少有一个线程能够继续执行。
wait-free的算法必定也是lock-free的。
obstruction-free
在任何时间点,一个线程被隔离为一个事务进行执行(其他线程suspended),并且在有限步骤内完成。在执行过程中,一旦发现数据被修改(采用时间戳、版本号),则回滚。
也叫做乐观锁,即乐观并发控制(OOC)。事务的过程是:1读取,并写时间戳;2准备写入,版本校验;3校验通过则写入,校验不通过,则回滚。
lock-free必定是obstruction-free的。
CAS原语
LL/SC, atom read-modify-write
如果CPU提供了Load-Link/Store-Conditional(LL/SC)这对指令,则就可以轻松实现变量的CPU级别无锁同步。
LL [addr],dst:从内存[addr]处读取值到dst。
SC value,[addr]:对于当前线程,自从上次的LL动作后内存值没有改变,就更新成新值。
上述过程就是实现lock-free的 read-modify-write 的原子操作。
CAS (Compare-And-Swap)
LL/SC这对CPU指令没有实现,那么就需要寻找其他算法,比如CAS。
CAS是一组原语指令,用来实现多线程下的变量同步。
在 x86 下的指令CMPXCHG实现了CAS,前置LOCK既可以达到原子性操作。截止2013,大部分多核处理器均支持CAS。
CAS原语有三个参数,内存地址,期望值,新值。如果内存地址的值==期望值,表示该值未修改,此时可以修改成新值。否则表示修改失败,返回false,由用户决定后续操作。
Bool CAS(T* addr, T expected, T newValue) { if( *addr == expected ) { *addr = newValue; return true; } else return false; }
ABA 问题
thread1意图对val=1进行操作变成2,cas(*val,1,2)。
thread1先读取val=1;thread1被抢占(preempted),让thread2运行。
thread2 修改val=3,又修改回1。
thread1继续执行,发现期望值与“原值”(其实被修改过了)相同,完成CAS操作。
使用CAS会造成ABA问题,特别是在使用指针操作一些并发数据结构时。
解决方案
ABAʹ:添加额外的标记用来指示是否被修改。
语言实现
Java demo
AtomicInteger atom = new AtomicInteger(1);
boolean r = atom.compareAndSet(1, 2);
C# demo
int i=1;
Interlocked.Increment(ref i);
Refs
http://en.wikipedia.org/wiki/ABA_problem ABA 以及相关例子