• 期望和期望的性质


    1. 若E[X]和E[Y]均有限,在(X,Y)连续的情况下:

        E[X+Y]=E[X]+E[Y]

        E[X1+X2+...Xn]=E[X1]+E[X2]+...+E[Xn]

        (上式不要求X,Y独立)

    2. 若X,Y具有二元分布列p(x,y),那么:

        E[g(X,Y)]=∑∑g(x,y)p(x,y)

        若X,Y具有联合分布密度,那么:

        E[g(X,Y)]=∫∫g(x,y)f(x,y)dxdy

    3. 若X,Y独立,那么:

        E[X1X2...Xn]=E[X1]E[X2]...E[Xn]

    4. 样本均值的期望等于其分布的均值。

    5. 若X,Y独立,那么:

        E[g(X)h(Y)]=E[g(X)]E[h(Y)]

    6. 协方差Cov(X,Y)=E[(X-E[X])(Y-E[Y])]

                             =E[XY]-E[X]E[Y]

    7. 若X1,...Xn 两两独立,那么Var(∑Xi)=∑Var(Xi)

       即,独立随机变量和的方差等于他们方差的和。

    8. 两个随机变量X,Y的相关系数ρ=Cov(X,Y)/sqrt(Var(X)·Var(Y))

       相关系数是两个随机变量间线性依赖程度的一种度量。 -1≤ρ≤1

       ρ接近0,表示两者缺乏线性依赖性。ρ=0,X,Y不相关。

       ρ取正值,X增加时Y趋于增加;

       ρ取负值,X增加时Y趋于下降。

    9. 浙江大学,概率论与数理统计,数学期望,产品产量、销售量与利润期望的问题:

        销售量Y是个随机变量,产品产量x是一个待求的非随机变量。

        如果把这两者画在数轴上,Y的位置是随机游动的。根据Y与x的相对位置,利润有不同的表达式(Y在x左侧,产品有积压;Y在x右侧,产品无积压)。

        这样将期望表达式的积分区间分为[0,x]和[y,+∞]。

  • 相关阅读:
    Trying to get property 'art_id' of non-object
    isset和empty以及is_null区别
    redis异步处理
    redis 基本使用
    nodejs (下)(设置响应参数)
    轮询技术
    mysql优化(下)
    108. Convert Sorted Array to Binary Search Tree
    148. Sort List
    236. Lowest Common Ancestor of a Binary Tree
  • 原文地址:https://www.cnblogs.com/byeyear/p/3482972.html
Copyright © 2020-2023  润新知