• 洛谷 P2375 [NOI2014]动物园 解题报告


    P2375 [NOI2014]动物园

    题目描述
    近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

    某天,园长给动物们讲解KMP算法。

    园长:“对于一个字符串(S),它的长度为(L)。我们可以在(O(L))的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”

    熊猫:“对于字符串(S)的前(i)个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作(next[i])。”

    园长:“非常好!那你能举个例子吗?”

    熊猫:“例(S)abcababc,则(next[5]=2)。因为(S)的前(5)个字符为abcabab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出(next[1] = next[2] = next[3] = 0)(next[4] = next[6] = 1)(next[7] = 2)(next[8] = 3)。”

    园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在(O(L))的时间内求出next数组。

    下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串(S)的前(i)个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作(num[i])。例如(S)aaaaa,则(num[4] = 2)。这是因为(S)的前(4)个字符为aaaa,其中a和aa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,(num[1] = 0,num[2] = num[3] = 1,num[5] = 2)。”

    最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出(num)数组呢?

    特别地,为了避免大量的输出,你不需要输出(num[i])分别是多少,你只需要输出所有((num[i]+1))的乘积,对(1,000,000,007)取模的结果即可。

    输入输出格式

    输入格式:

    (1)行仅包含一个正整数(n) ,表示测试数据的组数。
    随后(n)行,每行描述一组测试数据。每组测试数据仅含有一个字符串(S)(S)的定义详见题目描述。数据保证(S) 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

    输出格式:

    包含 (n) 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 (1,000,000,007) 取模的结果。输出文件中不应包含多余的空行。

    说明

    测试点编号 约定
    1 (N ≤ 5, L ≤ 50)
    2 (N ≤ 5, L ≤ 200)
    3 (N ≤ 5, L ≤ 200)
    4 (N ≤ 5, L ≤ 10,000)
    5 (N ≤ 5, L ≤ 10,000)
    6 (N ≤ 5, L ≤ 100,000)
    7 (N ≤ 5, L ≤ 200,000)
    8 (N ≤ 5, L ≤ 500,000)
    9 (N ≤ 5, L ≤ 1,000,000)
    10 (N ≤ 5, L ≤ 1,000,000)

    首先,如果学过KMP,很容易得到这样一个暴力算法

    50pts

    #include <cstdio>
    #include <cstring>
    #define ll long long
    const ll mod=1e9+7;
    const int N=1e6+10;
    char c[N];
    int nxt[N],cnt[N],n;
    int main()
    {
        scanf("%d",&n);
        while(n--)
        {
            scanf("%s",c+1);
            int len=strlen(c+1);
            ll ans=1;
            for(int j=0,i=2,k;i<=len;i++)
            {
                while(j&&c[j+1]!=c[i])
                    j=nxt[j];
                if(c[j+1]==c[i])
                    nxt[i]=++j,cnt[i]=cnt[j]+1;
                else
                    cnt[i]=nxt[i]=0;
                k=i;
                while(nxt[k]<<1>i) k=nxt[k];
                (ans*=1ll+cnt[k])%=mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

    我们可以对KMP的nxt数组建图,发现它是一颗树,可以拿倍增跳

    80pts

    // luogu-judger-enable-o2
    #include <cstdio>
    #include <cstring>
    #define ll long long
    const ll mod=1e9+7;
    const int N=1e6+10;
    int Next[N<<1],to[N<<1],head[N],cnt;
    void add(int u,int v)
    {
        to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
    }
    char c[N];
    int nxt[N],Cnt[N],n,s[N],f[N][21],tot;
    void dfs(int sta)
    {
        s[++tot]=sta;
        while(tot)
        {
            int now=s[tot--];
            for(int i=head[now];i;i=Next[i])
                s[++tot]=to[i],f[to[i]][0]=now;
        }
    }
    int main()
    {
        scanf("%d",&n);
        while(n--)
        {
            scanf("%s",c+1);
            memset(head,0,sizeof(head));cnt=0;
            int len=strlen(c+1);
            ll ans=1;add(0,1);
            for(int j=0,i=2;i<=len;i++)
            {
                while(j&&c[j+1]!=c[i])
                    j=nxt[j];
                if(c[j+1]==c[i])
                    nxt[i]=++j,Cnt[i]=Cnt[j]+1;
                else
                    Cnt[i]=nxt[i]=0;
                add(nxt[i],i);
            }
            dfs(0);
            for(register int j=1;j<=18;j++)
                for(register int i=1;i<=len;i++)
                    f[i][j]=f[f[i][j-1]][j-1];
            for(register int i=1;i<=len;i++)
            {
                int k=i;
                for(register int j=18;~j;j--)
                    if(f[k][j]<<1>i) k=f[k][j];
                (ans*=1ll+Cnt[k])%=mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

    这地方其实不需要建图,是我屑了

    然后把倍增两维反过来开就A了,好像是因为内存的某些原因所以快一些

    正解是先把所有Cnt跑出来

    然后再KMP匹配时直接不匹配超过一半就行了

    #include <cstdio>
    #include <cstring>
    #define ll long long
    const ll mod=1e9+7;
    const int N=1e6+10;
    char c[N];
    int nxt[N],Cnt[N],n;
    int main()
    {
        scanf("%d",&n);
        while(n--)
        {
            scanf("%s",c+1);
            int len=strlen(c+1);
            ll ans=1;Cnt[1]=1;
            for(int j=0,i=2;i<=len;i++)
            {
                while(j&&c[j+1]!=c[i])
                    j=nxt[j];
                if(c[j+1]==c[i])
                    nxt[i]=++j,Cnt[i]=Cnt[j]+1;
                else
                    Cnt[i]=1,nxt[i]=0;
            }
            for(int j=0,i=2;i<=len;i++)
            {
                while(j&&c[j+1]!=c[i]) j=nxt[j];
                if(c[j+1]==c[i]) ++j;
                while(j<<1>i) j=nxt[j];
                (ans*=1ll+Cnt[j])%=mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    

    2018.9.6

  • 相关阅读:
    关于Kb/s,KB/s的一些知识
    关于停止AsyncTask和Thread的问题
    Android使用layer-list实现三面边框
    MX4连接后adb无法识别解决方法
    浅析LruCache原理
    Android DiskLruCache 硬盘缓存
    NDK、SDK以及JNI的关系
    Android系统提供的开发常用的包名及作用
    MVC学习十三:RouteDebugger插件应用
    MVC学习十二:Ajax.ActionLink用法
  • 原文地址:https://www.cnblogs.com/butterflydew/p/9599766.html
Copyright © 2020-2023  润新知