• 洛谷 P2862 [USACO06JAN]把牛Corral the Cows 解题报告


    P2862 [USACO06JAN]把牛Corral the Cows

    题目描述

    Farmer John wishes to build a corral for his cows. Being finicky beasts, they demand that the corral be square and that the corral contain at least C (1 <= C <= 500) clover fields for afternoon treats. The corral's edges must be parallel to the X,Y axes.

    FJ's land contains a total of N (C <= N <= 500) clover fields, each a block of size 1 x 1 and located at with its lower left corner at integer X and Y coordinates each in the range 1..10,000. Sometimes more than one clover field grows at the same location; such a field would have its location appear twice (or more) in the input. A corral surrounds a clover field if the field is entirely located inside the corral's borders.

    Help FJ by telling him the side length of the smallest square containing C clover fields.

    约翰打算建一个围栏来圈养他的奶牛.作为最挑剔的兽类,奶牛们要求这个围栏必须是正方 形的,而且围栏里至少要有C< 500)个草场,来供应她们的午餐.

    约翰的土地上共有C<=N<=500)个草场,每个草场在一块1x1的方格内,而且这个方格的 坐标不会超过10000.有时候,会有多个草场在同一个方格内,那他们的坐标就会相同.

    告诉约翰,最小的围栏的边长是多少?

    输入输出格式

    输入格式:

    Line 1: Two space-separated integers: C and N

    Lines 2..N+1: Each line contains two space-separated integers that are the X,Y coordinates of a clover field.

    输出格式:

    Line 1: A single line with a single integer that is length of one edge of the minimum size square that contains at least C clover fields.


    这个题目的数据比较小,我的做法是(O(N^2*log^2N)),优化掉一个(logN)不算难,预处理一下即可,优化到(O(N*log^2N))就得用扫描线+线段树了

    先离散化,然后枚举正方形左下角,分别二分两个相邻的边的变成并更新答案。

    事实上这个题难在实现上,感觉代码不太好写。


    Code:

    #include <cstdio>
    #include <set>
    #include <map>
    using namespace std;
    int max(int x,int y){return x>y?x:y;}
    int min(int x,int y){return x<y?x:y;}
    const int N=504;
    struct node
    {
        int x,y,cnt;
    }t[N][N];
    int n,rr,cntx,cnty,f[N][N],fx[N],fy[N],ans=0x3f3f3f3f,X[10010],Y[10010];
    map <int,map<int,int > > m;
    set <int > s1,s2;
    bool check0(int i,int j,int R)//第i行第j列为左下角
    {
        int l=i,r=cnty,d=fx[R]-fx[j];
        while(l<r)
        {
            int mid=l+r+1>>1;
            if(fy[mid]-fy[i]>d)
                r=mid-1;
            else
                l=mid;
        }
        if(f[l][R]-f[i-1][R]-f[l][j-1]+f[i-1][j-1]>=rr)
        {
            ans=min(ans,d);
            return true;
        }
        else
            return false;
    }
    bool check1(int i,int j,int R)//第i行第j列为左下角
    {
        int l=j,r=cntx,d=fy[R]-fy[i];
        while(l<r)
        {
            int mid=l+r+1>>1;
            if(fx[mid]-fx[j]>d)
                r=mid-1;
            else
                l=mid;
        }
        if(f[R][l]-f[R][j-1]-f[i-1][l]+f[i-1][j-1]>=rr)
        {
            ans=min(ans,d);
            return true;
        }
        else
            return false;
    }
    int main()
    {
        scanf("%d%d",&rr,&n);
        int x,y,x0=0,y0=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&x,&y);
            m[x][y]++;
            s1.insert(x);
            s2.insert(y);
        }
        while(!s1.empty())
        {
            X[*s1.begin()]=++cntx;
            s1.erase(s1.begin());
        }
        while(!s2.empty())
        {
            Y[*s2.begin()]=++cnty;
            s2.erase(s2.begin());
        }
        for(map <int,map<int,int > >::iterator it1=m.begin();it1!=m.end();it1++)
        {
            for(map <int,int >::iterator it2=(it1->second).begin();it2!=(it1->second).end();it2++)
            {
                x0=X[it1->first],y0=Y[it2->first];
                t[x0][y0].cnt=it2->second;
                t[x0][y0].x=it1->first;
                t[x0][y0].y=it2->first;
            }
        }
        for(int i=1;i<=cnty;i++)
            for(int j=1;j<=cntx;j++)
            {
                f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+t[j][i].cnt;
                fx[j]=max(fx[j],t[j][i].x);
                fy[i]=max(fy[i],t[j][i].y);
            }
        for(int i=1;i<=cnty;i++)//枚举从下往上第几行
            for(int j=1;j<=cntx;j++)//枚举左下角
            {
                int l=j,r=cntx;//二分x的长度
                while(l<r)
                {
                    int mid=l+r>>1;
                    if(check0(i,j,mid))
                        r=mid;
                    else
                        l=mid+1;
                }
                check0(i,j,l);
                l=i,r=cnty;//二分y的长度
                while(l<r)
                {
                    int mid=l+r>>1;
                    if(check1(i,j,mid))
                        r=mid;
                    else
                        l=mid+1;
                }
                check1(i,j,l);
            }
        printf("%d
    ",ans+1);
        return 0;
    }
    
    

    代码写的的确不聪明


    2018.6.20

  • 相关阅读:
    第十二周总结
    第十一周总结
    第十周总结
    人月神话阅读笔记04
    第九周总结
    第八周总结
    人月神话阅读笔记03
    主成分分析(PCA)算法介绍及matlab实现案例
    Cross-entropy
    压缩算法--TP(1978)
  • 原文地址:https://www.cnblogs.com/butterflydew/p/9203893.html
Copyright © 2020-2023  润新知