Data Structure
题目描述
将一个非负整数序列划分为 (K) 段,分别计算出各段中的整数按位或的结果,然后再把这些结果按位与起来得到一个最终结果,把这个最终结果定义为这个序列的一个 (K−or−and) 值。
比如序列为 ([1,5,9,2],K=2),如果划分为 ([1,5],[9,2]),那么 (K−or−and) 值为 ((1or5)and(9or2)=1)。当然划分可能不止一种,所以 (K−or−and) 值也可能不止一个。
给定一个长度为 (N) 的非负整数序列 (A_1A_2A_3dots A_N),一个整数 (K) 和以下三种操作:
-
给定一个整数 (x) ,把序列中的所有数字按位或上 (x)。即(forall iin [1,N],A_i=A_i or x)。
-
给定一个整数 (x),把序列中的所有数字按位与上 (x)。即(forall iin [1,N],A_i=A_i and x)。
-
查询当前序列最大的 (K−or−and) 值。
lililalala太菜了,他希望你来帮他解决这个问题。
输入描述:
第一行两个整数 (N,K(1le Kle N imes 2 imes 10^5)) -序列长度和划分的段数。
第二行 (N)个整数 (A_1A_2A_3dots A_N( 0le A_1,A_2,A_3dots A_N<2^{31}))。
第三行一个整数 (Q(1le Qle 2 imes 10^5))--操作的数量。
然后 (Q) 行其中第 (i)行为以下三种格式之一:
(1x_i)--把序列中的所有数字按位或上 (x_i(0le x_i<2^{31}))。
(2x_i)--把序列中的所有数字按位与上 (x_i(0le x_i<2^{31}))。
(3)--查询当前序列最大的 (K−or−and) 值。
输出描述:
对于每次查询(操作 (3) )输出一行一个整数作为查询结果。
昨天晚上云做题,看了看C和D
然后成功嘴巴出做法,但是一直wa,今天顺手改一改,C比较简单,不管了
先不管修改,我们直接看看怎么求原序列的答案
显然可以按位贪心
如果我们可以确定高(i)位的答案为(ans),那么考虑(i+1)位是否可以取(1),可以直接贪心考虑
从左到右扫(A)数组,如果当前前缀异或值(x)可以拼出高(i+1)位的所有(1),就搞一个分割。
这样显然可以最大化分割。
然后复杂度(n log A_i)
考虑操作每次会把所有的某一位取(0)或者(1),如果某一维被取过,这一位就不用管了。
发现这样最多有(log A_i)个位被第一次全部取(0)或者(1)
那么直接每次暴力就好了
复杂度(O(nlog^2 A))
Code:
#include <cstdio>
#include <cctype>
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
//#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
#define gc() getchar()
template <class T>
void read(T &x)
{
x=0;char c=gc();
while(!isdigit(c)) c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
}
const int N=2e5+10;
int yuy[32],a[N];
int n,k,Q,ans;
void getans()
{
ans=0;
for(int j=30;~j;j--)
{
if(yuy[j]!=-1) continue;
int cnt=0,x=0;
ans|=1<<j;
for(int i=1;i<=n;i++)
{
x|=a[i];
if((ans&x)==ans) ++cnt,x=0;
}
if(cnt<k) ans^=1<<j;
}
for(int j=0;j<=30;j++)
{
if(yuy[j]==1)
ans|=1<<j;
else if(yuy[j]==0)
ans&=~(1<<j);
}
}
int main()
{
read(n),read(k);
for(int i=1;i<=n;i++) read(a[i]);
for(int j=0;j<=30;j++) yuy[j]=-1;
getans();
read(Q);
for(int op,x,i=1;i<=Q;i++)
{
read(op);
int flag=0;
if(op==1)
{
read(x);
for(int j=30;~j;j--)
if(x>>j&1)
{
if(yuy[j]==-1) flag=1;
yuy[j]=1;
}
if(flag) getans();
}
else if(op==2)
{
read(x);
for(int j=30;~j;j--)
if(!(x>>j&1))
{
if(yuy[j]==-1) flag=1;
yuy[j]=0;
}
if(flag) getans();
}
else
printf("%d
",ans);
for(int j=0;j<=30;j++)
{
if(yuy[j]==1)
ans|=1<<j;
else if(yuy[j]==0)
ans&=~(1<<j);
}
}
return 0;
}
2019.5.4