• Codeforces 570D TREE REQUESTS dfs序+树状数组


    链接

    题解链接:点击打开链接

    题意:

    给定n个点的树。m个询问

    以下n-1个数给出每一个点的父节点,1是root

    每一个点有一个字母

    以下n个小写字母给出每一个点的字母。

    以下m行给出询问:

    询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.

    思路:dfs序,给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。

    把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。

    把询问按深度排序,query[i]表示全部深度为i的询问。

    接下来依照深度一层层处理。

    对于第i层,把全部处于第i层的节点都更新到26个树状数组上。

    然后处理询问,直接查询树状数组上有多少种字母是奇数个的。显然奇数个字母的种数要<=1

    处理完第i层,就把树状数组逆向操作。相当于清空树状数组

    注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度,也可能比当前点的深度小。

    所以须要初始化一下答案。。


    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <stdio.h>  
    #include <iostream>  
    #include <algorithm>  
    #include <sstream>  
    #include <stdlib.h>  
    #include <string.h>  
    #include <limits.h>  
    #include <vector>  
    #include <string>  
    #include <time.h>  
    #include <math.h>  
    #include <iomanip>  
    #include <queue>  
    #include <stack>  
    #include <set>  
    #include <map>  
    const int inf = 1e9;
    const double eps = 1e-8;
    const double pi = acos(-1.0);
    template <class T>
    inline bool rd(T &ret) {
    	char c; int sgn;
    	if (c = getchar(), c == EOF) return 0;
    	while (c != '-' && (c<'0' || c>'9')) c = getchar();
    	sgn = (c == '-') ? -1 : 1;
    	ret = (c == '-') ? 0 : (c - '0');
    	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
    	ret *= sgn;
    	return 1;
    }
    template <class T>
    inline void pt(T x) {
    	if (x < 0) { putchar('-'); x = -x; }
    	if (x > 9) pt(x / 10);
    	putchar(x % 10 + '0');
    }
    using namespace std;
    const int N = 5e5 + 100;
    typedef long long ll;
    typedef pair<int, int> pii;
    struct BIT {
    	int c[N], maxn;
    	void init(int n) { maxn = n; memset(c, 0, sizeof c); }
    	inline int Lowbit(int x) { return x&(-x); }
    	void change(int i, int x)//i点增量为x
    	{
    		while (i <= maxn)
    		{
    			c[i] += x;
    			i += Lowbit(i);
    		}
    	}
    	int sum(int x) {//区间求和 [1,x]
    		int ans = 0;
    		for (int i = x; i >= 1; i -= Lowbit(i))
    			ans += c[i];
    		return ans;
    	}
    	int query(int l, int r) {
    		return sum(r) + sum(l - 1); 
    	}
    }t[26];
    int n, m;
    char s[N];
    vector<int>G[N], D[N];
    int l[N], r[N], top;
    vector<pii>query[N];
    bool ans[N];
    void dfs(int u, int fa, int dep) {
    	D[dep].push_back(u);
    	l[u] = ++top;
    	for (auto v : G[u])
    		if (v != fa)dfs(v, u, dep + 1);
    	r[u] = top;
    }
    int main() {
    	rd(n); rd(m);
    	fill(ans, ans + m + 10, 1);
    	for (int i = 0; i < 26; i++) t[i].init(n);
    	for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
    	top = 0;
    	dfs(1, 1, 1);
    	scanf("%s", s + 1);
    	for (int i = 1, u, v; i <= m; i++) {
    		rd(u); rd(v); query[v].push_back(pii(u, i));
    	}
    	for (int i = 1; i <= n; i++)
    	{
    		if (D[i].size() == 0)break;
    		for (auto v : D[i])	t[s[v] - 'a'].change(l[v], 1);
    		
    		for (pii Q : query[i])
    		{
    			int ou = 0;
    			for (int j = 0; j < 26; j++)
    			{
    				if (t[j].query(l[Q.first], r[Q.first]))
    					ou += t[j].query(l[Q.first], r[Q.first]) & 1;
    			}
    			ans[Q.second] = ou <= 1;
    		}
    		for (auto v : D[i])	t[s[v] - 'a'].change(l[v], -1);
    	}
    	for (int i = 1; i <= m; i++)ans[i] ?

    puts("Yes") : puts("No"); return 0; }


    D. Tree Requests
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the tree, each of the n - 1 remaining vertices has a parent in the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi, the parent index is always less than the index of the vertex (i.e., pi < i).

    The depth of the vertex is the number of nodes on the path from the root to v along the edges. In particular, the depth of the root is equal to 1.

    We say that vertex u is in the subtree of vertex v, if we can get from u to v, moving from the vertex to the parent. In particular, vertex v is in its subtree.

    Roma gives you m queries, the i-th of which consists of two numbers vihi. Let's consider the vertices in the subtree vi located at depthhi. Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make a palindrome, but all letters should be used.

    Input

    The first line contains two integers nm (1 ≤ n, m ≤ 500 000) — the number of nodes in the tree and queries, respectively.

    The following line contains n - 1 integers p2, p3, ..., pn — the parents of vertices from the second to the n-th (1 ≤ pi < i).

    The next line contains n lowercase English letters, the i-th of these letters is written on vertex i.

    Next m lines describe the queries, the i-th line contains two numbers vihi (1 ≤ vi, hi ≤ n) — the vertex and the depth that appear in thei-th query.

    Output

    Print m lines. In the i-th line print "Yes" (without the quotes), if in the i-th query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

    Sample test(s)
    input
    6 5
    1 1 1 3 3
    zacccd
    1 1
    3 3
    4 1
    6 1
    1 2
    
    output
    Yes
    No
    Yes
    Yes
    Yes
    
    Note

    String s is a palindrome if reads the same from left to right and from right to left. In particular, an empty string is a palindrome.

    Clarification for the sample test.

    In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

    In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d" respectively. It is impossible to form a palindrome of them.

    In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

    In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

    In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c" and "c". We may form a palindrome "cac".


  • 相关阅读:
    Mesos源码分析(8): Mesos-Slave的初始化
    OpenStack(一)——OpenStack的相关概念
    awk(gawk)文本报告生成器
    echo的色彩处理
    bash命令检测Shell脚本中的语法错误和查看详细执行过程
    Linux命令之cut
    sed流编辑器
    shell中函数的使用
    shell中的shift左移参数命令
    shell中跳出循环语句break和continue
  • 原文地址:https://www.cnblogs.com/brucemengbm/p/6907874.html
Copyright © 2020-2023  润新知