• 操作系统是怎么工作的——mykernel环境的搭建


    可以参见:https://github.com/mengning/mykernel

    首先感谢:http://www.euryugasaki.com/archives/1014

    1.搭建实验环境(实验环境centos6.5)

    wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.4.tar.xz # download Linux Kernel 3.9.4 source code

    wget --no-check-certificate https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch # downloadmykernel_for_linux3.9.4sc.patch

    xz -d linux-3.9.4.tar.xz

    tar -xvf linux-3.9.4.tar

    cd linux-3.9.4

    patch -p1 < ../mykernel_for_linux3.9.4sc.patch

    make allnoconfig

    make

    #在进行一下步骤时,当时系统提示没有qemu命令,需要进行相关配置!

    qemu -kernel arch/x86/boot/bzImage

    ln -s /usr/bin/qemu-system-i386 /usr/bin/qemu

    2.代码分析

    2.1 mypcb.h

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8                 //进程控制块
    
    /* CPU-specific state of this task */
    struct Thread {                        //存储ip,sp
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;                        //进程的id
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        char stack[KERNEL_STACK_SIZE];            //内核堆栈
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;            //指定的入口,平时入口为main函数
        struct PCB *next;                    //进程用链表连接
    }tPCB;
    
    void my_schedule(void);                    //函数,调度器

    2.2 mymain.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];               //声明tPCB类型的数组
    tPCB * my_current_task = NULL;           //声明当前task的指针
    volatile int my_need_sched = 0;        //是否需要调度
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;         //初始化0号进程
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped ,状态正在运行*/
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;    //入口
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//
        task[pid].next = &task[pid];    //指向自己,系统启动只有0号进程
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;  //新进程加到进程链表尾部
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp(%1) to esp */
            "pushl %1
    	"             /* push ebp */
            "pushl %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"             /* pop task[pid].thread.ip to eip ,ret之后0号进程正式启动*/
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    }   
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)        //循环1000万次判断是否需要调度
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }

    2.3 myinterrupt.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)   //设置时间片的大小,时间片用完时设置调度的标志
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"     /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip,%1f指接下来的标号为1的位置 */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
         
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(    
                "pushl %%ebp
    	"      /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl %2,%%ebp
    	"     /* restore  ebp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return;    
    }

    2.4总结如下

    2.4.1

    my_start_kernel()帮助我们创建进程;

    my_timer_handler()来记录时间,触发调度;

    my_start_kernel()中创建的0号进程的入口地址是my_process()。

    2.4.2

    my_process()作为每个进程的入口地址,开始逐个执行;

    通过到达时间片的轮转时刻,my_process()会调用my_schedule()来保护进程堆栈现场,完成进程间的切换;

    在mymain.c中实现内核的启动,通过my_start_kernel()来初始化进程;

    2.4.3总体框架(不够完善微笑

    image

    2.4.4具体分析

    2.4.4.1 首先看入口函数my_start_kernel()

        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;         //初始化0号进程
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped ,状态正在运行*/
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;    //入口
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//
        task[pid].next = &task[pid];    //指向自己,系统启动只有0号进程

    上述完成了对0号进程的初始化,包括

    设置task[pid].state;

    0号进程的入口地址为my_process();

    task[0]的进程属性中ip被设置成了my_process()函数的入口地址,sp设置成了堆栈的首地址

    /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;  //新进程加到进程链表
            task[i-1].next = &task[i];
        }

    以0号进程为模板复制了MAX_TASK_NUM-1个进程,进程链表如下:

    image

    之后:

    /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp(%1) to esp */
            "pushl %1
    	"             /* push ebp */
            "pushl %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"             /* pop task[pid].thread.ip to eip ,ret之后0号进程正式启动*/
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );

    第一步(set task[pid].thread.sp(%1) to esp),将task[0].thread.sp拿去修改esp的值,这时候内核堆栈的栈顶被修改到了task[0]的sp位置;

    第二步(push ebp),在task[0]的sp位置处压入ebp的值,来保护原来的内核堆栈;

    第三步(push task[pid].thread.ip ,pop task[pid].thread.ip to eip),设置task[0].thread.ip的值给eip,这样就能够保证cpu下一步能够执行0号进程,完成了进入my_process()的过程。

    注意:此时eip的值已经被修改,CPU进入my_process(),所以最后一句的popl ebp并不会被立即执行了。

    2.4.4.2 再看my_process()与my_timer_handler()

    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)        //循环1000万次判断是否需要调度
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)   //设置时间片的大小,时间片用完时设置调度的标志
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;      
    }

    经过前面所述步骤,程序执行转到了my_process()。由于这时候所有的进程只有task[0]才是执行态,my_need_sched == 0,无论如何,都不会触发时间片的轮转从而调度其他的进程。但是有my_timer_handler()函数(该函数会被linux内核自动调用),my_timer_handler()能够得以自动执行,每次执行时,会检查时间计数以及当前进程是否应该被调度,当满足条件后,会修改0号进程的my_need_sched值为1,0号进程就被暂停执行,进而调用my_schedule()函数。

    2.4.4.3 最后分析核心函数my_schedule()

    if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }

    首先进行一个简单的判断(判断当前的任务和接下来要被执行的任务是否为空)

    /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"     /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip,%1f指接下来的标号为1的位置 */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
         
        }

    在上面的代码中,next指针指向了当前任务的下一个任务,prev指针指向了当前0号进程。由建立的进程链表知:下一个被调度的进程应该是task[3],而此时task[3]的状态是-1,会执行else中的部分:

    else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(    
                "pushl %%ebp
    	"      /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl %2,%%ebp
    	"     /* restore  ebp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }

    task[3]的状态被更改为执行态,当前任务被修改为task[3]。

    此时便开 始进行0号进程的现场保护工作,以便日后的调度。堆栈会保存ebp的值,同时将esp保存到0号进程的sp中。这是因为,当切换回0号进程的时候,可以通过0号进程内sp的值来寻找要执行的task[3]的进程堆栈。然后将task[3]的sp值设置到esp和ebp中,创建好了task[3]的执行堆栈。将task[3]执行任务的入口地址ip设置给eip,完成对任务的执行入口设置。这时候实际上后面的返回仍然不会被执行,因为在修改eip后,cpu又去执行下一步的my_process()了,因此这时候就会出现各种循环调用,利用时间片的统计,完成对进程之间的切换。

  • 相关阅读:
    02-JavaScript语法
    001 docker基本环境的搭建
    023 虚拟机的安装
    022 虚拟机的网络配置
    021 虚拟机的安装
    004 java客户端的开发
    003 Rabbitmq中交换机的类型
    002 Rabbitmq的基础概念
    001 基础环境的搭建
    001 基本的环境的安装
  • 原文地址:https://www.cnblogs.com/boyiliushui/p/5421872.html
Copyright © 2020-2023  润新知