• HMM 模型输入数据处理的优雅做法 来自实际项目


    实际项目我是这样做的:

    def mining_ue_procedures_behavior(seq, lengths, imsi_list):  
        print("seq 3:", seq[:3], "lengths 3:", lengths[:3])
        # model.fit(seq, lengths)
        fitter = LabelEncoder().fit(seq)
    
        import sys
        n_components=[5, 10, 20, 30][int(sys.argv[1])]
        n_iter=[10, 30, 50, 100][int(sys.argv[2])]
    
        model_file = 'hmm_model_{}_{}.pkl'.format(n_components, n_iter)
        if os.path.exists(model_file):
            input_file = open(model_file, 'rb')
            model = pickle.load(input_file)
            input_file.close()
        else:
            model = hmm.MultinomialHMM(n_components=n_components, n_iter=n_iter)
            seq2 = fitter.transform(seq)
            model.fit(np.array([seq2]).T, lengths)
            output_file = open(model_file, 'wb')
            pickle.dump(model, output_file)
            output_file.close()
        print("model.startprob_:", model.startprob_)
        print("model.transmat_:", model.transmat_)
        print("model.emissionprob_:", model.emissionprob_)
        ## [[  1.11111111e-01   2.22222222e-01   6.66666667e-01]
        ##  [  5.55555556e-01   4.44444444e-01   6.27814351e-28]]
        start = 0
        ans = []
        for i,l in enumerate(lengths):
            s = seq[start: start+l]
            score = model.score(np.array([[d] for d in fitter.transform(s)]))
            ans.append([score, imsi_list[i], s])
            # print("score:", model.score(np.array([[d] for d in fitter.transform(s)])), s)
            start += l
        ans.sort(key=lambda x: x[0])
        score_index = 0
        malicious_ue = []
        for i,item in enumerate(ans):
            if item[score_index] < Config.HMMBaseScore:
                malicious_ue.append(item)
            print(item)
        # print(ans)
    

      

    输入数据参考了下面的优雅做法:

    # predict a sequence of hidden states based on visible states
    seq = []
    lengths = []
    for _ in range(100):
        length = random.randint(5, 10)
        lengths.append(length)
        for _ in range(length):
            r = random.random()
            if r < .2:
                seq.append(0)
            elif r < .6:
                seq.append(1)
            else:
                seq.append(2)
    seq = np.array([seq]).T
    model = model.fit(seq, lengths)
    

    此外,HMM模型的持续增量训练:

    # 解决问题3,学习问题,仅给出X,估计模型参数,鲍姆-韦尔奇算法,其实就是基于EM算法的求解
    # 解决这个问题需要X的有一定的数据量,然后通过model.fit(X, lengths=None)来进行训练然后自己生成一个模型
    # 并不需要设置model.startprob_,model.transmat_,model.emissionprob_
    # 例如:
    
    import numpy as np
    from hmmlearn import hmm
    
    states = ["Rainy", "Sunny"]##隐藏状态
    n_states = len(states)##隐藏状态长度
    
    observations = ["walk", "shop", "clean"]##可观察的状态
    n_observations = len(observations)##可观察序列的长度
    
    model = hmm.MultinomialHMM(n_components=n_states, n_iter=1000, tol=0.01)
    
    X = np.array([[2, 0, 1, 1, 2, 0],[0, 0, 1, 1, 2, 0],[2, 1, 2, 1, 2, 0]])
    model.fit(X)
    print model.startprob_
    print model.transmat_
    print model.emissionprob_
    # [[  1.11111111e-01   2.22222222e-01   6.66666667e-01]
    #  [  5.55555556e-01   4.44444444e-01   6.27814351e-28]]
    print model.score(X)
    model.fit(X)
    print model.startprob_
    print model.transmat_
    print model.emissionprob_
    和第一次fit(X)得到的行顺序不一样
    # [[  5.55555556e-01   4.44444444e-01   9.29759770e-28]
    #  [  1.11111111e-01   2.22222222e-01   6.66666667e-01]]
    print model.score(X)
    model.fit(X)
    print model.startprob_
    print model.transmat_
    print model.emissionprob_
    print model.score(X)
    # 可以进行多次fit,然后拿评分最高的模型,就可以预测了
    print model.predict(bob_Actions, lengths=None)
    # 预测最可能的隐藏状态
    # 例如:
    # [0 1 0 0 0 1]
    print model.predict_proba(bob_Actions, lengths=None)# 预测各个隐藏状态的概率
    # 例如:
    # [[ 0.82770645  0.17229355]
    #  [ 0.27361913  0.72638087]
    #  [ 0.58700959  0.41299041]
    #  [ 0.69861348  0.30138652]
    #  [ 0.81799813  0.18200187]
    #  [ 0.24723966  0.75276034]]
    # 在生成的模型中,可以随机生成随机生成一个模型的Z和X
    X,Z = model.sample(n_samples=5, random_state=None)
    print "Bob Actions:", ", ".join(map(lambda x: observations[x], X))
    print "weathers:", ", ".join(map(lambda x: states[x], Z))
    
    
    # 保存模型
    import pickle
    output = open('D:\xxx\data1111.pkl', 'wb')
    s = pickle.dump(model, output)
    output.close()
    # 调用模型
    input = open('D:\xxx\data.pkl', 'rb')
    model = pickle.load(model)
    input.close()
    model.predict(X)  
    

      

  • 相关阅读:
    代码注入——c++代码注入
    Windows 用来定位 DLL 的搜索路径
    LoadLibraryA与GetProcAddress介绍
    DLL 函数导出的规则和方法
    C++ dll的隐式与显式调用
    C++ main函数的参数
    DLL注入之修改PE静态注入
    用户权限设置和进程权限提升
    DLL注入之windows消息钩取
    c++回调函数
  • 原文地址:https://www.cnblogs.com/bonelee/p/10860978.html
Copyright © 2020-2023  润新知