• 相似图片搜索的原理(二)(转)


    http://www.ruanyifeng.com/blog/2013/03/similar_image_search_part_ii.html

    作者: 阮一峰

    日期: 2013年3月31日

    二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。

    昨天,我在isnowfy的网站看到,还有其他两种方法也很简单,这里做一些笔记。

    一、颜色分布法

    每张图片都可以生成颜色分布的直方图(color histogram)。如果两张图片的直方图很接近,就可以认为它们很相似。

    任何一种颜色都是由红绿蓝三原色(RGB)构成的,所以上图共有4张直方图(三原色直方图 + 最后合成的直方图)。

    如果每种原色都可以取256个值,那么整个颜色空间共有1600万种颜色(256的三次方)。针对这1600万种颜色比较直方图,计算量实在太大了,因此需要采用简化方法。可以将0~255分成四个区:0~63为第0区,64~127为第1区,128~191为第2区,192~255为第3区。这意味着红绿蓝分别有4个区,总共可以构成64种组合(4的3次方)。

    任何一种颜色必然属于这64种组合中的一种,这样就可以统计每一种组合包含的像素数量。

    上图是某张图片的颜色分布表,将表中最后一栏提取出来,组成一个64维向量(7414, 230, 0, 0, 8, ..., 109, 0, 0, 3415, 53929)。这个向量就是这张图片的特征值或者叫"指纹"。

    于是,寻找相似图片就变成了找出与其最相似的向量。这可以用皮尔逊相关系数或者余弦相似度算出。

    二、内容特征法

    除了颜色构成,还可以从比较图片内容的相似性入手。

    首先,将原图转成一张较小的灰度图片,假定为50x50像素。然后,确定一个阈值,将灰度图片转成黑白图片。

      

    如果两张图片很相似,它们的黑白轮廓应该是相近的。于是,问题就变成了,第一步如何确定一个合理的阈值,正确呈现照片中的轮廓?

    显然,前景色与背景色反差越大,轮廓就越明显。这意味着,如果我们找到一个值,可以使得前景色和背景色各自的"类内差异最小"(minimizing the intra-class variance),或者"类间差异最大"(maximizing the inter-class variance),那么这个值就是理想的阈值。

    1979年,日本学者大津展之证明了,"类内差异最小"与"类间差异最大"是同一件事,即对应同一个阈值。他提出一种简单的算法,可以求出这个阈值,这被称为"大津法"(Otsu's method)。下面就是他的计算方法。

    假定一张图片共有n个像素,其中灰度值小于阈值的像素为 n1 个,大于等于阈值的像素为 n2 个( n1 + n2 = n )。w1 和 w2 表示这两种像素各自的比重。

      w1 = n1 / n

      w2 = n2 / n

    再假定,所有灰度值小于阈值的像素的平均值和方差分别为 μ1 和 σ1,所有灰度值大于等于阈值的像素的平均值和方差分别为 μ2 和 σ2。于是,可以得到

      类内差异 = w1(σ1的平方) + w2(σ2的平方)

      类间差异 = w1w2(μ1-μ2)^2

    可以证明,这两个式子是等价的:得到"类内差异"的最小值,等同于得到"类间差异"的最大值。不过,从计算难度看,后者的计算要容易一些。

    下一步用"穷举法",将阈值从灰度的最低值到最高值,依次取一遍,分别代入上面的算式。使得"类内差异最小"或"类间差异最大"的那个值,就是最终的阈值。具体的实例和Java算法,请看这里

    有了50x50像素的黑白缩略图,就等于有了一个50x50的0-1矩阵。矩阵的每个值对应原图的一个像素,0表示黑色,1表示白色。这个矩阵就是一张图片的特征矩阵。

    两个特征矩阵的不同之处越少,就代表两张图片越相似。这可以用"异或运算"实现(即两个值之中只有一个为1,则运算结果为1,否则运算结果为0)。对不同图片的特征矩阵进行"异或运算",结果中的1越少,就是越相似的图片。

    (完)

  • 相关阅读:
    最简单,小白易上手 ajax请求数据库信息,echarts页面显示,无需跳转servlet
    北京市民信件大数据简单分析可视化(附加源码) 同含爬虫代码
    echart 横轴 上下分开显示
    echart 横轴倾斜
    echarts 柱状图横轴(x轴)数量太多,可以加一个滚动轴
    错误: 找不到或无法加载主类 org.apache.sqoop.Sqoop
    JAVA爬虫——爬取采集北京市政百姓信件内容——首都之窗(采用htmlunit,webmagic)附源代码、htmlUnit webmagic JAR包
    eclipse 中的DFS Location 找不到了(已解决)
    在Scala 中 val 与 var 的区别(言简意赅 小白易懂 实例代码)
    第21届国际足联世界杯观后感
  • 原文地址:https://www.cnblogs.com/bnuvincent/p/4857866.html
Copyright © 2020-2023  润新知