题目链接:poj 3764 The xor-longest Path
题目大意:给定一棵树,每条边上有一个权值。找出一条路径,使得路径上权值的亦或和最大。
解题思路:dfs一遍,预处理出每一个节点到根节点路径的亦或和rec,那么随意路径均能够表示rec[a] ^ rec[b],所以问题
就转换成在一些数中选出两个数亦或和最大。那么就建立字典树查询就可以。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100005 * 32;
const int sigma_size = 2;
struct Tire {
int sz;
int g[maxn][sigma_size];
void init();
int idx(char ch);
void insert(int s);
int find(int s);
}T;
int N, M, E, first[maxn], jump[maxn], link[maxn], val[maxn], rec[maxn];
inline void add_Edge (int u, int v, int w) {
link[E] = v;
val[E] = w;
jump[E] = first[u];
first[u] = E++;
}
void dfs (int u, int pre, int s) {
T.insert(s);
rec[M++] = s;
for (int i = first[u]; i + 1; i = jump[i]) {
int v = link[i];
if (v == pre)
continue;
dfs(v, u, s ^ val[i]);
}
}
int main () {
while (scanf("%d", &N) == 1) {
M = E = 0;
T.init();
memset(first, -1, sizeof(first));
int u, v, w;
for (int i = 1; i < N; i++) {
scanf("%d%d%d", &u, &v, &w);
add_Edge(u, v, w);
add_Edge(v, u, w);
}
dfs(0, 0, 0);
int ans = 0;
for (int i = 0; i < M; i++)
ans = max(ans, T.find(rec[i]));
printf("%d
", ans);
}
return 0;
}
void Tire::init() {
sz = 1;
memset(g[0], 0, sizeof(g[0]));
}
int Tire::find(int s) {
int ret = 0, u = 0;
for (int i = 30; i >= 0; i--) {
int v = ((s>>i)&1) ^ 1;
if (g[u][v])
ret |= (1<<i);
else
v = v^1;
u = g[u][v];
}
return ret;
}
void Tire::insert(int s) {
int u = 0;
for (int i = 30; i >= 0; i--) {
int v = (s>>i)&1;
if (g[u][v] == 0) {
memset(g[sz], 0, sizeof(g[sz]));
g[u][v] = sz++;
}
u = g[u][v];
}
}