• 深度优先遍历与广度优先遍历


    深度优先遍历

    1.深度优先遍历的递归定义

     

      假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

      图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历

    2.基本实现思想:

    (1)访问顶点v;

    (2)从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;

    (3)重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

    3.伪代码

    递归实现

    1)访问顶点v;visited[v]=1;//算法执行前visited[n]=0

    (2)w=顶点v的第一个邻接点;

    (3)while(w存在)  

               if(w未被访问)

                       从顶点w出发递归执行该算法; 
               w=顶点v的下一个邻接点;

    非递归实现

     (1)栈S初始化;visited[n]=0;

     (2)访问顶点v;visited[v]=1;顶点v入栈S

     (3)while(栈S非空)

                x=栈S的顶元素(不出栈);

                if(存在并找到未被访问的x的邻接点w)

                        访问w;visited[w]=1;

                        w进栈;

                else

                         x出栈;

    广度优先遍历

    1.广度优先遍历定义

     图的广度优先遍历BFS算法是一个分层搜索的过程,和树的层序遍历算法类同,它也需要一个队列以保持遍历过的顶点顺序,以便按出队的顺序再去访问这些顶点的邻接顶点。

    2.基本实现思想

    (1)顶点v入队列。

    (2)当队列非空时则继续执行,否则算法结束。

    (3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。

    (4)查找顶点v的第一个邻接顶点col。

    (5)若v的邻接顶点col未被访问过的,则col入队列。

    (6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。

            直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。

    广度优先遍历图是以顶点v为起始点,由近至远,依次访问和v有路径相通而且路径长度为1,2,……的顶点。为了使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问,需设置队列存储访问的顶点。

    3.伪代码

    (1)初始化队列Q;visited[n]=0;

    (2)访问顶点v;visited[v]=1;顶点v入队列Q;

    (3) while(队列Q非空)   

                  v=队列Q的对头元素出队;

                  w=顶点v的第一个邻接点;

                 while(w存在) 

                         如果w未访问,则访问顶点w;

                         visited[w]=1;

                         顶点w入队列Q;

                         w=顶点v的下一个邻接点。

  • 相关阅读:
    MySQL 处理重复数据
    MySQL 序列使用
    MySQL 元数据
    MySQL 临时表和复制表
    MySQL 索引
    MySQL ALTER命令-修改数据表名或者修改数据表字段
    MySQL 事务
    MySQL 正则表达式
    MySQL NULL 值处理
    MySQL 排序
  • 原文地址:https://www.cnblogs.com/biyeymyhjob/p/2596983.html
Copyright © 2020-2023  润新知