• py-faster-rcnn 训练参数修改(转)


    faster rcnn默认有三种网络模型 ZF(小)、VGG_CNN_M_1024(中)、VGG16 (大)

    训练图片大小为500*500,类别数1。

    一. 修改VGG_CNN_M_1024模型配置文件

    1)train.prototxt文件
          input-data层的num_class数值由21改为2;
          roi-data层的num_class数值由21改为2;
          cls_score层的num_output数值由21改为2(1+1);
          bbox_pred层的num_output数值由84改为8(2*4);
    2)test.prototxt文件(c++dll调用的.prototxt也要改)
    cls_score层的num_output数值由21改为2(1+1);
    bbox_pred层的num_output数值由84改为8(2*4);
    3)lib/datasets/pascal_voc.py文件
           修改self._classes = ('__background__',  '训练的数据类别')

    4) 测试模型时需要改的文件faster_rcnn_test.pt

    cls_score层的num_output数值由21改为2;

    bbox_pred层的num_output数值由84改为8;

     二. 解读训练测试配置参数文件config.py

    import os
    import os.path as osp
    import numpy as np
    # `pip install easydict` if you don't have it
    from easydict import EasyDict as edict
     
    __C = edict()
    # Consumers can get config by:
    # 在其他文件使用config要加的命令,例子见train_net.py
    #   from fast_rcnn_config import cfg
    cfg = __C
     
    #
    # Training options
    # 训练的选项
    #
     
    __C.TRAIN = edict()
     
    # Scales to use during training (can list multiple scales)
    # Each scale is the pixel size of an image's shortest side
    # 最短边Scale成600
    __C.TRAIN.SCALES = (600,)
     
    # Max pixel size of the longest side of a scaled input image
    # 最长边最大为1000
    __C.TRAIN.MAX_SIZE = 1000
     
    # Images to use per minibatch
    # 一个minibatch包含两张图片
    __C.TRAIN.IMS_PER_BATCH = 2
     
    # Minibatch size (number of regions of interest [ROIs])
    #  Minibatch大小,即ROI的数量
    __C.TRAIN.BATCH_SIZE = 128
     
    # Fraction of minibatch that is labeled foreground (i.e. class > 0)
    # minibatch中前景样本所占的比例
    __C.TRAIN.FG_FRACTION = 0.25
     
    # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH)
    # 与前景的overlap大于等于0.5认为该ROI为前景样本
    __C.TRAIN.FG_THRESH = 0.5
     
    # Overlap threshold for a ROI to be considered background (class = 0 if
    # overlap in [LO, HI))
    # 与前景的overlap在0.1-0.5认为该ROI为背景样本
    __C.TRAIN.BG_THRESH_HI = 0.5
    __C.TRAIN.BG_THRESH_LO = 0.1
     
    # Use horizontally-flipped images during training?
    # 水平翻转图像,增加数据量
    __C.TRAIN.USE_FLIPPED = True
     
    # Train bounding-box regressors
    # 训练bb回归器
    __C.TRAIN.BBOX_REG = True
     
    # Overlap required between a ROI and ground-truth box in order for that ROI to
    # be used as a bounding-box regression training example
    # BBOX阈值,只有ROI与gt的重叠度大于阈值,这样的ROI才能用作bb回归的训练样本
    __C.TRAIN.BBOX_THRESH = 0.5
     
    # Iterations between snapshots
    # 每迭代1000次产生一次snapshot
    __C.TRAIN.SNAPSHOT_ITERS = 10000
     
    # solver.prototxt specifies the snapshot path prefix, this adds an optional
    # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel
    # 为产生的snapshot文件名称添加一个可选的infix. solver.prototxt指定了snapshot名称的前缀
    __C.TRAIN.SNAPSHOT_INFIX = ''
     
    # Use a prefetch thread in roi_data_layer.layer
    # So far I haven't found this useful; likely more engineering work is required
    # 在roi_data_layer.layer使用预取线程,作者认为不太有效,因此设为False
    __C.TRAIN.USE_PREFETCH = False
     
    # Normalize the targets (subtract empirical mean, divide by empirical stddev)
    # 归一化目标BBOX_NORMALIZE_TARGETS,减去经验均值,除以标准差
    __C.TRAIN.BBOX_NORMALIZE_TARGETS = True
    # Deprecated (inside weights)
    # 弃用
    __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
    # Normalize the targets using "precomputed" (or made up) means and stdevs
    # (BBOX_NORMALIZE_TARGETS must also be True)
    # 在BBOX_NORMALIZE_TARGETS为True时,归一化targets,使用经验均值和方差
    __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = False
    __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0)
    __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2)
     
    # Train using these proposals
    # 使用'selective_search'的proposal训练!注意该文件来自fast rcnn,下文提到RPN
    __C.TRAIN.PROPOSAL_METHOD = 'selective_search'
     
    # Make minibatches from images that have similar aspect ratios (i.e. both
    # tall and thin or both short and wide) in order to avoid wasting computation
    # on zero-padding.
    # minibatch的两个图片应该有相似的宽高比,以避免冗余的zero-padding计算
    __C.TRAIN.ASPECT_GROUPING = True
     
    # Use RPN to detect objects
    # 使用RPN检测目标
    __C.TRAIN.HAS_RPN = False
    # IOU >= thresh: positive example
    # RPN的正样本阈值
    __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7
    # IOU < thresh: negative example
    # RPN的负样本阈值
    __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3
    # If an anchor statisfied by positive and negative conditions set to negative
    # 如果一个anchor同时满足正负样本条件,设为负样本(应该用不到)
    __C.TRAIN.RPN_CLOBBER_POSITIVES = False
    # Max number of foreground examples
    # 前景样本的比例
    __C.TRAIN.RPN_FG_FRACTION = 0.5
    # Total number of examples
    # batch size大小
    __C.TRAIN.RPN_BATCHSIZE = 256
    # NMS threshold used on RPN proposals
    # 非极大值抑制的阈值
    __C.TRAIN.RPN_NMS_THRESH = 0.7
    # Number of top scoring boxes to keep before apply NMS to RPN proposals
    # 在对RPN proposal使用NMS前,要保留的top scores的box数量
    __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000
    # Number of top scoring boxes to keep after applying NMS to RPN proposals
    # 在对RPN proposal使用NMS后,要保留的top scores的box数量
    __C.TRAIN.RPN_POST_NMS_TOP_N = 2000
    # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale)
    # proposal的高和宽都应该大于RPN_MIN_SIZE,否则,映射到conv5上不足一个像素点
    __C.TRAIN.RPN_MIN_SIZE = 16
    # Deprecated (outside weights)
    # 弃用
    __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
    # Give the positive RPN examples weight of p * 1 / {num positives}
    # 给定正RPN样本的权重
    # and give negatives a weight of (1 - p)
    # 给定负RPN样本的权重
    # Set to -1.0 to use uniform example weighting
    # 这里正负样本使用相同权重
    __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0
     
    #
    # Testing options
    # 测试选项 ,类同
    #
     
    __C.TEST = edict()
     
    # Scales to use during testing (can list multiple scales)
    # Each scale is the pixel size of an image's shortest side
    __C.TEST.SCALES = (600,)
     
    # Max pixel size of the longest side of a scaled input image
    __C.TEST.MAX_SIZE = 1000
     
    # Overlap threshold used for non-maximum suppression (suppress boxes with
    # IoU >= this threshold)
    # 测试时非极大值抑制的阈值
    __C.TEST.NMS = 0.3
     
    # Experimental: treat the (K+1) units in the cls_score layer as linear
    # predictors (trained, eg, with one-vs-rest SVMs).
    # 分类不再用SVM,设置为False
    __C.TEST.SVM = False
     
    # Test using bounding-box regressors
    # 使用bb回归
    __C.TEST.BBOX_REG = True
     
    # Propose boxes
    # 不使用RPN生成proposal
    __C.TEST.HAS_RPN = False
     
    # Test using these proposals
    # 使用selective_search生成proposal
    __C.TEST.PROPOSAL_METHOD = 'selective_search'
     
    ## NMS threshold used on RPN proposals
    #  RPN proposal的NMS阈值
    __C.TEST.RPN_NMS_THRESH = 0.7
    ## Number of top scoring boxes to keep before apply NMS to RPN proposals
    __C.TEST.RPN_PRE_NMS_TOP_N = 6000
    ## Number of top scoring boxes to keep after applying NMS to RPN proposals
    __C.TEST.RPN_POST_NMS_TOP_N = 300
    # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale)
    __C.TEST.RPN_MIN_SIZE = 16
     
    #
    # MISC
    #
     
    # The mapping from image coordinates to feature map coordinates might cause
    # 从原图到feature map的坐标映射,可能会造成在原图上不同的box到了feature map坐标系上变得相同了
    # some boxes that are distinct in image space to become identical in feature
    # coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor
    # for identifying duplicate boxes.
    # 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16
    # 缩放因子
    __C.DEDUP_BOXES = 1./16.
     
    # Pixel mean values (BGR order) as a (1, 1, 3) array
    # We use the same pixel mean for all networks even though it's not exactly what
    # they were trained with
    # 所有network所用的像素均值设为相同
    __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
     
    # For reproducibility
    __C.RNG_SEED = 3
     
    # A small number that's used many times
    # 极小的数
    __C.EPS = 1e-14
     
    # Root directory of project
    # 项目根路径
    __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..'))
     
    # Data directory
    # 数据路径
    __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data'))
     
    # Model directory
    # 模型路径
    __C.MODELS_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'models', 'pascal_voc'))
     
    # Name (or path to) the matlab executable
    # matlab executable
    __C.MATLAB = 'matlab'
     
    # Place outputs under an experiments directory
    # 输出在experiments路径下
    __C.EXP_DIR = 'default'
     
    # Use GPU implementation of non-maximum suppression
    # GPU实施非极大值抑制
    __C.USE_GPU_NMS = True
     
    # Default GPU device id
    # 默认GPU id
    __C.GPU_ID = 0
     
    def get_output_dir(imdb, net=None):
        #返回输出路径,在experiments路径下
        """Return the directory where experimental artifacts are placed.
        If the directory does not exist, it is created.
     
        A canonical标准 path is built using the name from an imdb and a network
        (if not None).
        """
        outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name))
        if net is not None:
            outdir = osp.join(outdir, net.name)
        if not os.path.exists(outdir):
            os.makedirs(outdir)
        return outdir
     
    def _merge_a_into_b(a, b):
        #两个配置文件融合
        """Merge config dictionary a into config dictionary b, clobbering the
        options in b whenever they are also specified in a.
        """
        if type(a) is not edict:
            return
     
        for k, v in a.iteritems():
            # a must specify keys that are in b
            if not b.has_key(k):
                raise KeyError('{} is not a valid config key'.format(k))
     
            # the types must match, too
            old_type = type(b[k])
            if old_type is not type(v):
                if isinstance(b[k], np.ndarray):
                    v = np.array(v, dtype=b[k].dtype)
                else:
                    raise ValueError(('Type mismatch ({} vs. {}) '
                                    'for config key: {}').format(type(b[k]),
                                                                type(v), k))
     
            # recursively merge dicts
            if type(v) is edict:
                try:
                    _merge_a_into_b(a[k], b[k])
                except:
                    print('Error under config key: {}'.format(k))
                    raise
            #用配置a更新配置b的对应项
            else:
                b[k] = v
     
    def cfg_from_file(filename):
        """Load a config file and merge it into the default options."""
        # 导入配置文件并与默认选项融合
        import yaml
        with open(filename, 'r') as f:
            yaml_cfg = edict(yaml.load(f))
     
        _merge_a_into_b(yaml_cfg, __C)
     
    def cfg_from_list(cfg_list):
        # 命令行设置config
        """Set config keys via list (e.g., from command line)."""
        from ast import literal_eval
        assert len(cfg_list) % 2 == 0
        for k, v in zip(cfg_list[0::2], cfg_list[1::2]):
            key_list = k.split('.')
            d = __C
            for subkey in key_list[:-1]:
                assert d.has_key(subkey)
                d = d[subkey]
            subkey = key_list[-1]
            assert d.has_key(subkey)
            try:
                value = literal_eval(v)
            except:
                # handle the case when v is a string literal
                value = v
            assert type(value) == type(d[subkey]), 
                'type {} does not match original type {}'.format(
                type(value), type(d[subkey]))
            d[subkey] = value

    三. cache问题

    在重新训练新的数据之前将cache删除

    1) py-faster-rcnn/output 
    2) py-faster-rcnn/data/cache


    四. 超参数

    py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage_fast_rcnn_solver*.pt

    base_lr:
    0.001

    lr_policy:
    'step'

    step_size:
    30000

    display:
    20

    ....

    总结solver文件个参数的意义

    iteration: 数据进行一次前向-后向的训练
    batchsize:每次迭代训练图片的数量
    epoch:1个epoch就是将所有的训练图像全部通过网络训练一次
    例如:假如有1280000张图片,batchsize=256,则1个epoch需要1280000/256=5000次iteration
    它的max-iteration=450000,则共有450000/5000=90个epoch
    而lr什么时候衰减与stepsize有关,减少多少与gamma有关,即:若stepsize=500, base_lr=0.01, gamma=0.1,则当迭代到第一个500次时,lr第一次衰减,衰减后的lr=lr*gamma=0.01*0.1=0.001,以后重复该过程,所以
    stepsize是lr的衰减步长,gamma是lr的衰减系数。
    在训练过程中,每到一定的迭代次数都会测试,迭代次数是由test-interval决定的,如test_interval=1000,则训练集每迭代1000次测试一遍网络,而
    test_size, test_iter, 和test图片的数量决定了怎样test, test-size决定了test时每次迭代输入图片的数量,test_iter就是test所有的图片的迭代次数,如:500张test图片,test_iter=100,则test_size=5, 而solver文档里只需要根据test图片总数量来设置test_iter,以及根据需要设置test_interval即可。

    迭代次数在文件py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py中进行修改

    max_iters=[80000, 40000, 80000, 40000]

    分别对应rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段的迭代次数。

    1. 预训练的ImageNet模型,放在下面的文件夹下,我的是VGG_CNN_M_1024.v2.caffemodel

    2. 两种训练数据的算法
      (1) 使用交替优化(alternating optimization)算法来训练和测试Faster R-CNN
      1
      2
      3
      4
      5
      6
      7
      8
      cd $FRCN_ROOT
      ./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
      # GPU_ID是你想要训练的GPUID
      # 你可以选择如下的网络之一进行训练:ZF, VGG_CNN_M_1024, VGG16
      # --set ... 运行你自定义fast_rcnn.config参数,例如.
      # --set EXP_DIR seed_rng1701 RNG_SEED 1701
      #例如命令
      ./experiments/scripts/faster_rcnn_alt_opt.sh 0 ZF pascal_voc

    输出的结果在 $FRCN_ROOT/output下。训练过程截图:

    (2) 使用近似联合训练( approximate joint training)

    cd $FRCN_ROOT
    ./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]

    这个方法是联合RPN模型和Fast R-CNN网络训练。而不是交替训练。用此种方法比交替优化快1.5倍,但是准确率相近。所以推荐使用这种方法

    开始训练:

    cd py-faster-rcnn

    ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc

    参数表明使用第一块GPU(0);模型是VGG_CNN_M_1024;训练数据是pascal_voc(voc2007)。


    训练Fast R-CNN网络的结果保存在这个目录下:

    output/<experiment directory>/<dataset name>/
    

    测试保存在这个目录下:

    output/<experiment directory>/<dataset name>/<network snapshot name>/

  • 相关阅读:
    用servlet来实现验证码的功能
    Sqlite3 数据库
    xml解析
    Android .9文件
    AsyncTask
    Looper Handler
    URLConnection
    单例模式
    Httpclient访问网络
    json 解析
  • 原文地址:https://www.cnblogs.com/bile/p/9110986.html
Copyright © 2020-2023  润新知