• ML(4)——逻辑回归


      Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,“逻辑”是Logistic的音译,和真正的逻辑没有任何关系。

    模型

    线性模型

      由于逻辑回归是一种分类方法,所以我们仍然以最简的二分类为例。与感知机不同,对于逻辑回归的分类结果,y ∈ {0, 1},我们需要找到最佳的hθ(x)拟合数据。

      这里容易联想到线性回归。线性回归也可以用于分类,但是很多时候,尤其是二分类的时候,线性回归并不能很好地工作,因为分类不是连续的函数,其结果只能是固定的离散值。设想一下有线性回归得到的拟合曲线hθ(x),当x→∞时,有可能y→∞,这就无法对y ∈ {0, 1}进行有效解释。

      对于二分类,逻辑回归的目的是找到一个函数,使得无论x取何值,都有:

      满足这个式子的典型函数是sigmoid函数,也称为logistic函数:

     

      在sigmoid函数g(z)中:

      现在,将hθ(x)赋予sigmoid函数g(z)的特性:

     

      其中:

      最终,逻辑回归的模型函数:

     

      假设给定一些输入,现在需要根据逻辑回归模型预测肿瘤是否是良性,最终得到hθ(x) = 0.8,可以用概率表述:

     

      上式表示在当前输入下,y=1的概率是0.8,y=0的概率是0.2,因为是分类,所以判断y = 1。

      需要注意的是,sigmoid函数不是样本点的分隔曲线,它表示的是逻辑回归的测结果;θTx才是分隔曲线,它将样本点分为θTx ≥ 0和θTx < 0两部分:

    分隔曲线

     

    Sigmoid函数,最终模型

      由此看来,逻辑回归的线性模型同样是找到最佳的θ,使两类样本点分离,这就在很大程度上和感知机相似。

    多项式模型

      直观地看,线性模型的决策边界就是将两类样本点分离开的分隔曲线,我们之前已经多次接触过,只是没有给它起一个专业的名字。假设在一个模型中,hθ(x) = g(θ0 + θ1x1 + θ2x2) = g(-3 + x1 + x2),那么决策边界就是 -3 + x1 + x2 = 0:

      很多时候,直线并不能很好地作为决策边界,如下图所示:

      此时需要使用多项式模型添加更多的特征:

      这相当于添加了两个新的特征:

      

      深入了解不同函数的特征有助于选择正确的模型。添加的特征越多,曲线越复杂,对训练样本的拟合度越高,同时也更容易导致过拟合而丧失泛化性:

     

      关于过拟合及其处理,可参考《ML(附录3)——数据拟合和正则化》。

    多分类

      我们已经知道了二分类的模型,然而实际问题中往往不只是二分类,那么逻辑回归如何处理多分类呢?

      一种可行的方法就是化繁为简,将多分类转换为二分类:

      如上图所示,三分类转换为三个二分类,其中上标表示分类的类别:

     

      对于输入x,其预测结果是所有hθ(x)中值最大的一个。对于最后的预测结论,以上面的三分类为例,如果输入一个标签为2的特征集,对于hθ(0)(x) 来说,hθ(0)(x) < 0.5:

     

      对于hθ(1)(x) 来说,hθ(1)(x) < 0.5:

     

      对于hθ(3)(x) 来说,hθ(3)(x) ≥ 0.5:

      因此,对于输入x,其预测结果是所有hθ(x)中值最大的一个。至于每个样本标签值是多少,无所谓了,在训练每个hθ(i)(x)前,都需要把y(i) 转换为1,其余转换为0。

      在上面的图组中也可以看出,对于有k个标签的多分类,需要训练k个不同的逻辑回归模型。

    学习策略

      在感知机中,模型函数使用了sign,由于sign是阶跃函数,不易优化,所以为了求得损失函数,我们使用函数间隔进行了一系列转换。对于逻辑回归,由于函数本身是连续曲线,所以不会存在这样的问题,其J(θ)使用对数损失函数。对数损失函数的原型:

     

      将其用在逻辑回归上:

      这里的对数是以e为底的对数,即:

      注意,0 < hθ(x) < 1。上图是y = 1时的costfunction,可以看到,当hθ(x)→1时,Cost(hθ(x), y)→0;当hθ(x)→0时,Cost(hθ(x),y)→∞。也就是说当分类是1时,sigmoid的值越接近于1,损失值越小;sigmoid的值越接近于0,损失值越大。损失值越大,分类点越接近决策面,其分类越模糊。与此类似,下图是 y = 0时的cost function:

      Cost function可以把y = 1和y=1两种情况合并到一起:

     

      理解这种形式需要再次将y分开:

      最后得到J(θ)的最终形式:

     

      注意,这里hθ(x)是sigmoid函数:

     

      如果写成矩阵的形式:

      上式中,hθ(x)的操作对应矩阵中的每个元素,1-Y,log hθ(x)也一样,可参照后文的代码实现来理解。

    算法

      与之前的算法一样,我们的目的是找到最佳的θ使得J(θ)最小化,将求解θ转换为最优化问题,即:

    梯度下降

      梯度下降是一个适用范围很广的方法,这里同样可以使用梯度下降求解θ:

     

      关于梯度下降的更多内容可参考《ML(附录1)——梯度下降》。

      在对J(θ)求偏导时先做一些准备工作,计算sigmoid函数的导数(关于偏导和一元函数的导数,可参考《多变量微积分》和《单变量微积分》的相关章节):

     

      现在计算m=1时J(θ)的偏导,此时可以删除上标:

      推广到m个样本:

      在《机器学习实战》中提到对极大似然数使用梯度上升求最大值,最后得到:

     

      这和对损失函数采用梯度下降求最小值是一样的,因为损失函数使用了似然数的负数形式,Cost(X, Y) = -logP(Y|X),所以对-logP(Y|X)梯度下降和对+logP(Y|X)梯度上升将得到同样的结果。

      对于多项式模型,需要预先添加特征,使得每个θj都有唯一的xj对应:

     

      如果用矩阵表示:

      

      在此基础上使用L2正则化(关于正则化,可参考《ML(附录3)——过拟合与欠拟合》):

     

    代码实现

    ex2data1.txt:

      1 34.62365962451697,78.0246928153624,0
      2 30.28671076822607,43.89499752400101,0
      3 35.84740876993872,72.90219802708364,0
      4 60.18259938620976,86.30855209546826,1
      5 79.0327360507101,75.3443764369103,1
      6 45.08327747668339,56.3163717815305,0
      7 61.10666453684766,96.51142588489624,1
      8 75.02474556738889,46.55401354116538,1
      9 76.09878670226257,87.42056971926803,1
     10 84.43281996120035,43.53339331072109,1
     11 95.86155507093572,38.22527805795094,0
     12 75.01365838958247,30.60326323428011,0
     13 82.30705337399482,76.48196330235604,1
     14 69.36458875970939,97.71869196188608,1
     15 39.53833914367223,76.03681085115882,0
     16 53.9710521485623,89.20735013750205,1
     17 69.07014406283025,52.74046973016765,1
     18 67.94685547711617,46.67857410673128,0
     19 70.66150955499435,92.92713789364831,1
     20 76.97878372747498,47.57596364975532,1
     21 67.37202754570876,42.83843832029179,0
     22 89.67677575072079,65.79936592745237,1
     23 50.534788289883,48.85581152764205,0
     24 34.21206097786789,44.20952859866288,0
     25 77.9240914545704,68.9723599933059,1
     26 62.27101367004632,69.95445795447587,1
     27 80.1901807509566,44.82162893218353,1
     28 93.114388797442,38.80067033713209,0
     29 61.83020602312595,50.25610789244621,0
     30 38.78580379679423,64.99568095539578,0
     31 61.379289447425,72.80788731317097,1
     32 85.40451939411645,57.05198397627122,1
     33 52.10797973193984,63.12762376881715,0
     34 52.04540476831827,69.43286012045222,1
     35 40.23689373545111,71.16774802184875,0
     36 54.63510555424817,52.21388588061123,0
     37 33.91550010906887,98.86943574220611,0
     38 64.17698887494485,80.90806058670817,1
     39 74.78925295941542,41.57341522824434,0
     40 34.1836400264419,75.2377203360134,0
     41 83.90239366249155,56.30804621605327,1
     42 51.54772026906181,46.85629026349976,0
     43 94.44336776917852,65.56892160559052,1
     44 82.36875375713919,40.61825515970618,0
     45 51.04775177128865,45.82270145776001,0
     46 62.22267576120188,52.06099194836679,0
     47 77.19303492601364,70.45820000180959,1
     48 97.77159928000232,86.7278223300282,1
     49 62.07306379667647,96.76882412413983,1
     50 91.56497449807442,88.69629254546599,1
     51 79.94481794066932,74.16311935043758,1
     52 99.2725269292572,60.99903099844988,1
     53 90.54671411399852,43.39060180650027,1
     54 34.52451385320009,60.39634245837173,0
     55 50.2864961189907,49.80453881323059,0
     56 49.58667721632031,59.80895099453265,0
     57 97.64563396007767,68.86157272420604,1
     58 32.57720016809309,95.59854761387875,0
     59 74.24869136721598,69.82457122657193,1
     60 71.79646205863379,78.45356224515052,1
     61 75.3956114656803,85.75993667331619,1
     62 35.28611281526193,47.02051394723416,0
     63 56.25381749711624,39.26147251058019,0
     64 30.05882244669796,49.59297386723685,0
     65 44.66826172480893,66.45008614558913,0
     66 66.56089447242954,41.09209807936973,0
     67 40.45755098375164,97.53518548909936,1
     68 49.07256321908844,51.88321182073966,0
     69 80.27957401466998,92.11606081344084,1
     70 66.74671856944039,60.99139402740988,1
     71 32.72283304060323,43.30717306430063,0
     72 64.0393204150601,78.03168802018232,1
     73 72.34649422579923,96.22759296761404,1
     74 60.45788573918959,73.09499809758037,1
     75 58.84095621726802,75.85844831279042,1
     76 99.82785779692128,72.36925193383885,1
     77 47.26426910848174,88.47586499559782,1
     78 50.45815980285988,75.80985952982456,1
     79 60.45555629271532,42.50840943572217,0
     80 82.22666157785568,42.71987853716458,0
     81 88.9138964166533,69.80378889835472,1
     82 94.83450672430196,45.69430680250754,1
     83 67.31925746917527,66.58935317747915,1
     84 57.23870631569862,59.51428198012956,1
     85 80.36675600171273,90.96014789746954,1
     86 68.46852178591112,85.59430710452014,1
     87 42.0754545384731,78.84478600148043,0
     88 75.47770200533905,90.42453899753964,1
     89 78.63542434898018,96.64742716885644,1
     90 52.34800398794107,60.76950525602592,0
     91 94.09433112516793,77.15910509073893,1
     92 90.44855097096364,87.50879176484702,1
     93 55.48216114069585,35.57070347228866,0
     94 74.49269241843041,84.84513684930135,1
     95 89.84580670720979,45.35828361091658,1
     96 83.48916274498238,48.38028579728175,1
     97 42.2617008099817,87.10385094025457,1
     98 99.31500880510394,68.77540947206617,1
     99 55.34001756003703,64.9319380069486,1
    100 74.77589300092767,89.52981289513276,1
    View Code

      

    Octave

    %% Machine Learning Online Class - Exercise 2: Logistic Regression
    %
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the logistic
    %  regression exercise. You will need to complete the following functions 
    %  in this exericse:
    %
    %     sigmoid.m
    %     costFunction.m
    %     predict.m
    %     costFunctionReg.m
    %
    %  For this exercise, you will not need to change any code in this file,
    %  or any other files other than those mentioned above.
    %
    
    %% Initialization
    clear ; close all; clc
    
    %% Load Data
    %  The first two columns contains the exam scores and the third column
    %  contains the label.
    
    data = load('ex2data1.txt');
    X = data(:, [1, 2]); y = data(:, 3);
    
    %% ==================== Part 1: Plotting ====================
    %  We start the exercise by first plotting the data to understand the 
    %  the problem we are working with.
    
    fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
             'indicating (y = 0) examples.
    ']);
    
    plotData(X, y);
    
    % Put some labels 
    hold on;
    % Labels and Legend
    xlabel('Exam 1 score')
    ylabel('Exam 2 score')
    
    % Specified in plot order
    legend('Admitted', 'Not admitted')
    hold off;
    
    fprintf('
    Program paused. Press enter to continue.
    ');
    pause;
    
    
    %% ============ Part 2: Compute Cost and Gradient ============
    %  In this part of the exercise, you will implement the cost and gradient
    %  for logistic regression. You neeed to complete the code in 
    %  costFunction.m
    
    %  Setup the data matrix appropriately, and add ones for the intercept term
    [m, n] = size(X);
    
    % Add intercept term to x and X_test
    X = [ones(m, 1) X];
    
    % Initialize fitting parameters
    initial_theta = zeros(n + 1, 1);
    
    % Compute and display initial cost and gradient
    [cost, grad] = costFunction(initial_theta, X, y);
    
    fprintf('Cost at initial theta (zeros): %f
    ', cost);
    fprintf('Expected cost (approx): 0.693
    ');
    fprintf('Gradient at initial theta (zeros): 
    ');
    fprintf(' %f 
    ', grad);
    fprintf('Expected gradients (approx):
     -0.1000
     -12.0092
     -11.2628
    ');
    
    % Compute and display cost and gradient with non-zero theta
    test_theta = [-24; 0.2; 0.2];
    [cost, grad] = costFunction(test_theta, X, y);
    
    fprintf('
    Cost at test theta: %f
    ', cost);
    fprintf('Expected cost (approx): 0.218
    ');
    fprintf('Gradient at test theta: 
    ');
    fprintf(' %f 
    ', grad);
    fprintf('Expected gradients (approx):
     0.043
     2.566
     2.647
    ');
    
    fprintf('
    Program paused. Press enter to continue.
    ');
    pause;
    
    %% ============= Part 3: Optimizing using fminunc  =============
    %  In this exercise, you will use a built-in function (fminunc) to find the
    %  optimal parameters theta.
    
    %  Set options for fminunc
    options = optimset('GradObj', 'on', 'MaxIter', 400);
    %  Run fminunc to obtain the optimal theta
    %  This function will return theta and the cost 
    [theta, cost] = fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
    % Print theta to screen
    fprintf('Cost at theta found by fminunc: %f
    ', cost);
    fprintf('Expected cost (approx): 0.203
    ');
    fprintf('theta: 
    ');
    fprintf(' %f 
    ', theta);
    fprintf('Expected theta (approx):
    ');
    fprintf(' -25.161
     0.206
     0.201
    ');
    
    % Plot Boundary
    plotDecisionBoundary(theta, X, y);
    
    % Put some labels 
    hold on;
    % Labels and Legend
    xlabel('Exam 1 score')
    ylabel('Exam 2 score')
    
    % Specified in plot order
    legend('Admitted', 'Not admitted')
    hold off;
    
    
    fprintf('
    Program paused. Press enter to continue.
    ');
    pause;
    
    %% ============== Part 4: Predict and Accuracies ==============
    %  After learning the parameters, you'll like to use it to predict the outcomes
    %  on unseen data. In this part, you will use the logistic regression model
    %  to predict the probability that a student with score 45 on exam 1 and 
    %  score 85 on exam 2 will be admitted.
    %
    %  Furthermore, you will compute the training and test set accuracies of 
    %  our model.
    %
    %  Your task is to complete the code in predict.m
    
    %  Predict probability for a student with score 45 on exam 1 
    %  and score 85 on exam 2 
    
    prob = sigmoid([1 45 85] * theta);
    fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
             'probability of %f
    '], prob);
    fprintf('Expected value: 0.775 +/- 0.002
    
    ');
    
    % Compute accuracy on our training set
    p = predict(theta, X);
    
    fprintf('Train Accuracy: %f
    ', mean(double(p == y)) * 100);
    fprintf('Expected accuracy (approx): 89.0
    ');
    fprintf('
    ');
    

      plotData.m

    function plotData(X, y)
    %PLOTDATA Plots the data points X and y into a new figure 
    %   PLOTDATA(x,y) plots the data points with + for the positive examples
    %   and o for the negative examples. X is assumed to be a Mx2 matrix.
    
    % Create New Figure
      figure; hold on;
    
    % Instructions: Plot the positive and negative examples on a
    %               2D plot, using the option 'k+' for the positive
    %               examples and 'ko' for the negative examples.
      pos = find(y==1); neg = find(y == 0);
    
      plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 2, 'MarkerSize', 7);
      plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
    
      hold off;
    
    end
    

      sigmoid.m

    function g = sigmoid(z)
    %SIGMOID Compute sigmoid function
    %   g = SIGMOID(z) computes the sigmoid of z.
    
    % You need to return the following variables correctly 
      g = ones(size(z)) ./ (1 + exp(-1 * z));
    
    end
    

      costFunction.m

    function [J, grad] = costFunction(theta, X, y)
      %COSTFUNCTION Compute cost and gradient for logistic regression
      %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
      %   parameter for logistic regression and the gradient of the cost
      %   w.r.t. to the parameters.
    
      % Initialize some useful values
      m = length(y); % number of training examples
    
      % You need to return the following variables correctly 
      J = 0;
      grad = zeros(size(theta));
    
      % Instructions: Compute the cost of a particular choice of theta.
      %               You should set J to the cost.
      %               Compute the partial derivatives and set grad to the partial
      %               derivatives of the cost w.r.t. each parameter in theta
      %
      % Note: grad should have the same dimensions as theta
      %
    
      %  % use intrator to compue J
      %  for i = 1:m
      %    theta_X = X(i,:) * theta;
      %    h = 1 / (1 + exp(-1 * theta_X));
      %    J += y(i) * log(h) + (1 - y(i)) * log(1 - h);
      %  end
      %  J /= -1 * m;
      
      % use matrix to compute gradient
      h = sigmoid(X * theta);
      J = (y' * log(h) + (1 - y)' * log(1 - h)) / (-1 * m);
      #J /= -1 * m;
      
      grad = X' * (h - y) / m;
    end

    Python

      1 from __future__ import division
      2 import numpy as np
      3 import random
      4 import matplotlib.pyplot as plt
      5 
      6 def train(X, Y, iterateNum=10000000, alpha=0.003):
      7     '''
      8     :param X: 训练样本的特征集
      9     :param Y: 训练样本的标签
     10     :param iterateNum: 梯度下降的迭代次数
     11     :param alpha: 学习率
     12     :return:theta
     13     '''
     14     m, n = np.shape(X)
     15     theta = np.zeros((n + 1, 1))
     16     # 在第一列添加x0
     17     X_new = np.c_[np.ones(m), X]
     18 
     19     for i in range(iterateNum):
     20         m = np.shape(X_new)[0]
     21         h = h_function(X_new, theta)
     22         theta -= alpha * (np.dot(X_new.T, h - Y) / m)
     23 
     24         if i % 100000 == 0:
     25             print('	---------iter=' + str(i) + ', J(θ)=' + str(J_function(X_new, Y, theta)))
     26 
     27     print( str(J_function(X_new, Y, theta)))
     28     return theta
     29 
     30 def h_function(X, theta):
     31     return sigmoid(np.dot(X, theta))
     32 
     33 def sigmoid(X):
     34     return 1 / (1 + np.exp(-X ))
     35 
     36 # 计算J(θ)
     37 def J_function(X, Y, theta):
     38     h = h_function(X, theta)
     39     J_1 = np.dot(Y.T, np.log(h))
     40     J_2 = np.dot(1 - Y.T, np.log(1 - h))
     41     m = np.shape(X)[0]
     42     J = (-1 / m) * (J_1 + J_2)
     43 
     44     return J
     45 
     46 def predict(x, theta):
     47     if h_function(x, theta) >= 0.5:
     48         return 1
     49     else:
     50         return 0
     51 
     52 # 归一化处理
     53 def normalization(X):
     54     m, n = np.shape(X)
     55     X_new = np.zeros((m, n))
     56 
     57     for j in range(n):
     58         max = np.max(X[:,j])
     59         min = np.min(X[:,j])
     60         d_value = max - min
     61         for i in range(m):
     62             X_new[i, j] = (X[i, j] - min) / d_value
     63 
     64     return X_new
     65 
     66 def plot_datas(X, Y, theta):
     67     plt.figure()
     68 
     69     # 绘制分隔直线 g = 0
     70     x1 = [0, 1]
     71     x2 = [(-1 / theta[2]) * (theta[0] + theta[1] * x1[0]),
     72           (-1 / theta[2]) * (theta[0] + theta[1] * x1[1])]
     73     plt.xlabel('x1')
     74     plt.ylabel('x2')
     75 
     76     plt.plot(x1, x2, color='b')
     77 
     78     # 绘制数据点
     79     admit_x1, admit_x2 = [],[]
     80     not_admit_x1, not_admit_x2 = [],[]
     81     for i in range(len(X)):
     82         if (Y[i] == 1):
     83             admit_x1.append(X[i][0])
     84             admit_x2.append(X[i][1])
     85         else:
     86             not_admit_x1.append(X[i][0])
     87             not_admit_x2.append(X[i][1])
     88 
     89     plt.scatter(admit_x1, admit_x2, color='g')
     90     plt.scatter(not_admit_x1, not_admit_x2, marker='x', color='r')
     91 
     92     plt.legend(['logistic line', 'Admitted', 'Not admitted'])
     93     plt.show()
     94 
     95 if __name__ == '__main__':
     96     train_datas = np.loadtxt('ex2data1.txt', delimiter=',')
     97     X = train_datas[:,[0, 1]]
     98     X = normalization(X)
     99     Y = train_datas[:,[2]]
    100     theta = train(X, Y)
    101 
    102     print(theta)
    103     plot_datas(X, Y, theta)

     

      对于样本数据,上面的梯度下降并不是非常有效,无论是否预处理数据(归一化或其他方法),都必须反复调整学习率和迭代次数。如果学习率过大,算法将不会收敛;如果过小,算法收敛的十分缓慢,需要增加迭代次数。代码中的参数最终将使算法收敛于0.203。

    Sklearn

     1 from sklearn.linear_model import LogisticRegression
     2 import numpy as np
     3 
     4 if __name__ == '__main__':
     5     train_datas = np.loadtxt("ex2data1.txt", delimiter=',')
     6     X_train = train_datas[:,[0, 1]]
     7     Y_train = train_datas[:,[2]]
     8 
     9     logistic = LogisticRegression()
    10     logistic.fit(X_train, Y_train)
    11 
    12     theta = [logistic.intercept_[0], logistic.coef_[0]]
    13     print(theta)

     

      参考:

      Ng视频《Logistic Regression》

      周志华《机器学习》

      《机器学习导论》

      Peter Flach《机器学习》

     


       作者:我是8位的

      出处:http://www.cnblogs.com/bigmonkey

      本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

      扫描二维码关注公众号“我是8位的”

      

  • 相关阅读:
    leetcode : Valid Sudoku
    leetcode : Longest Increasing Subsequence
    leetcode : Search for a Range
    leetcode : Search Insert Position
    leetcode : next permutation
    leetcode : Implement strStr()
    leetcode : Remove Element
    框架:Spring MVC
    笔试:在线编程相关
    J2EE:关系(一对多、多对一、多对多关系)
  • 原文地址:https://www.cnblogs.com/bigmonkey/p/9225619.html
Copyright © 2020-2023  润新知