• 吴恩达深度学习:2.3梯度下降Gradient Descent


    1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输出y,把它和基本真值标签y进行比较

    右边展示了完整的公式,成本函数衡量了参数w和b在训练集上的效果。要找到合适的w和b,就很自然的想到,使得成本函数J(w,b)尽可能小的w和b

    2.接下来看看梯度下降算法,下图中的横轴表示空间参数w和b,在实践中,w可以是更高维的,但是为了绘图的方便,我们让w是一个实数,b也是一个实数,成本函数J(w,b)是在水平轴w和b上的曲面,曲面的高度J(w,b)表示在某一点的值,我们所要做的就是找到这样的w和b,使其对应的成本函数J值是最小值,我们可以看到成本函数J是一个凸函数,就像这样的大碗,因此这是一个凸函数

    和下面这个函数不一样,下面这个函数是非凸的,它有很不同的局部最优解

      

      为了找到更好的参数值,我们要做的就是用某初始值初始化w和b值,对于logitstic回归而言,几乎任意的初始方法都有效,通常用0进行初始化。梯度下降算法就是从初始点开始,朝最陡的方向走一步,在梯度下降一步后,它可能停在那里,因为它正试图沿着最快下降的方向往下走或者说尽可能快的往下走,这就是梯度下降的一次迭代。

      我们更新w,使得,在算法收敛之前,我们重复这样做,这里α表示学习率,可以控制每一次迭代或者梯度下降中的步长。无论从哪个方向来变化,梯度下降算法都会朝着全局最小值方向移动,

  • 相关阅读:
    大二(上期)学期末个人学习总结
    《梦断代码》阅读笔记01
    软件工程概论课程评价
    03《构建之法》阅读笔记第三篇(终结篇)
    02《构建之法》阅读笔记第二篇
    个人简评——2345王牌拼音输入法
    《人件集》阅读笔记第一篇
    个人学习进度条
    AcWing ST算法(区间求最值)打卡
    AcWing 101. 最高的牛 (差分) 打卡
  • 原文地址:https://www.cnblogs.com/bigdata-stone/p/10301304.html
Copyright © 2020-2023  润新知