• Redis源码分析(三)---dict哈希结构


              昨天分析完adlist的Redis代码,今天马上马不停蹄的继续学习Redis代码中的哈希部分的结构学习,不过在这里他不叫什么hashMap,而是叫dict,而且是一种全新设计的一种哈希结构,他只是通过几个简单的结构体,再搭配上一些比较常见的哈希算法,就实现了类似高级语言中HashMap的作用了。也让我见识了一些哈希算法的实现,比如dbj hash的算法实现,俗称times33,算法,就是不停的*33,。这种算是一种超级简单的哈希算法。

             下面说说给我感觉Redis代码中哈希实现的不是那么简单,中间加了一些东西,比如说dictType定义了一些字典集合操作的公共方法,我把dict叫做字典总类,也可以说字典操作类,真正存放键值对的叫dictEntry,我叫做字典集合,字典集合存放在哈希表中,叫dictht,下面给出一张结构图来理理思路。


            下面给出2个文件的代码解析:

    dict.h:

    <span style="font-size:14px;">/* Hash Tables Implementation.
     *
     * This file implements in-memory hash tables with insert/del/replace/find/
     * get-random-element operations. Hash tables will auto-resize if needed
     * tables of power of two in size are used, collisions are handled by
     * chaining. See the source code for more information... :)
     *
     * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */
    
    #include <stdint.h>
    
    #ifndef __DICT_H
    #define __DICT_H
    
    /* 定义了成功与错误的值 */
    #define DICT_OK 0
    #define DICT_ERR 1
    
    /* Unused arguments generate annoying warnings... */
    /* dict没有用到时,用来提示警告的 */
    #define DICT_NOTUSED(V) ((void) V)
    
    /* 字典结构体,保存K-V值的结构体 */
    typedef struct dictEntry {
    	//字典key函数指针
        void *key;
        union {
            void *val;
            //无符号整型值
            uint64_t u64;
            //有符号整型值
            int64_t s64;
            double d;
        } v;
        //下一字典结点
        struct dictEntry *next;
    } dictEntry;
    
    /* 字典类型 */
    typedef struct dictType {
    	//哈希计算方法,返回整形变量
        unsigned int (*hashFunction)(const void *key);
        //复制key方法
        void *(*keyDup)(void *privdata, const void *key);
        //复制val方法
        void *(*valDup)(void *privdata, const void *obj);
        //key值比较方法
        int (*keyCompare)(void *privdata, const void *key1, const void *key2);
        //key的析构函数
        void (*keyDestructor)(void *privdata, void *key);
        //val的析构函数
        void (*valDestructor)(void *privdata, void *obj);
    } dictType;
    
    /* This is our hash table structure. Every dictionary has two of this as we
     * implement incremental rehashing, for the old to the new table. */
    /* 哈希表结构体 */
    typedef struct dictht {
    	//字典实体
        dictEntry **table;
        //表格可容纳字典数量
        unsigned long size;
        unsigned long sizemask;
        //正在被使用的数量
        unsigned long used;
    } dictht;
    
    /* 字典主操作类 */
    typedef struct dict {
    	//字典类型
        dictType *type;
        //私有数据指针
        void *privdata;
        //字典哈希表,共2张,一张旧的,一张新的
        dictht ht[2];
        //重定位哈希时的下标
        long rehashidx; /* rehashing not in progress if rehashidx == -1 */
        //当前迭代器数量
        int iterators; /* number of iterators currently running */
    } dict;
    
    /* If safe is set to 1 this is a safe iterator, that means, you can call
     * dictAdd, dictFind, and other functions against the dictionary even while
     * iterating. Otherwise it is a non safe iterator, and only dictNext()
     * should be called while iterating. */
    /* 字典迭代器,如果是安全迭代器,这safe设置为1,可以调用dicAdd,dictFind */
    /* 如果是不安全的,则只能调用dicNext方法*/
    typedef struct dictIterator {
    	//当前字典
        dict *d;
        //下标
        long index;
        //表格,和安全值的表格代表的是旧的表格,还是新的表格
        int table, safe;
        //字典实体
        dictEntry *entry, *nextEntry;
        /* unsafe iterator fingerprint for misuse detection. */
        /* 指纹标记,避免不安全的迭代器滥用现象 */
        long long fingerprint;
    } dictIterator;
    
    /* 字典扫描方法 */
    typedef void (dictScanFunction)(void *privdata, const dictEntry *de);
    
    /* This is the initial size of every hash table */
    /* 初始化哈希表的数目 */
    #define DICT_HT_INITIAL_SIZE     4
    
    /* ------------------------------- Macros ------------------------------------*/
    /* 字典释放val函数时候调用,如果dict中的dictType定义了这个函数指针, */
    #define dictFreeVal(d, entry) 
        if ((d)->type->valDestructor) 
            (d)->type->valDestructor((d)->privdata, (entry)->v.val)
        
    /* 字典val函数复制时候调用,如果dict中的dictType定义了这个函数指针, */
    #define dictSetVal(d, entry, _val_) do { 
        if ((d)->type->valDup) 
            entry->v.val = (d)->type->valDup((d)->privdata, _val_); 
        else 
            entry->v.val = (_val_); 
    } while(0)
    
    /* 设置dictEntry中共用体v中有符号类型的值 */
    #define dictSetSignedIntegerVal(entry, _val_) 
        do { entry->v.s64 = _val_; } while(0)
    
    /* 设置dictEntry中共用体v中无符号类型的值 */
    #define dictSetUnsignedIntegerVal(entry, _val_) 
        do { entry->v.u64 = _val_; } while(0)
    
    /* 设置dictEntry中共用体v中double类型的值 */
    #define dictSetDoubleVal(entry, _val_) 
        do { entry->v.d = _val_; } while(0)
    
    /* 调用dictType定义的key析构函数 */
    #define dictFreeKey(d, entry) 
        if ((d)->type->keyDestructor) 
            (d)->type->keyDestructor((d)->privdata, (entry)->key)
    
    /* 调用dictType定义的key复制函数,没有定义直接赋值 */
    #define dictSetKey(d, entry, _key_) do { 
        if ((d)->type->keyDup) 
            entry->key = (d)->type->keyDup((d)->privdata, _key_); 
        else 
            entry->key = (_key_); 
    } while(0)
    
    /* 调用dictType定义的key比较函数,没有定义直接key值直接比较 */
    #define dictCompareKeys(d, key1, key2) 
        (((d)->type->keyCompare) ? 
            (d)->type->keyCompare((d)->privdata, key1, key2) : 
            (key1) == (key2))
    
    #define dictHashKey(d, key) (d)->type->hashFunction(key)   //哈希定位方法
    #define dictGetKey(he) ((he)->key)    //获取dictEntry的key值
    #define dictGetVal(he) ((he)->v.val)  //获取dicEntry中共用体v中定义的val值
    #define dictGetSignedIntegerVal(he) ((he)->v.s64) //获取dicEntry中共用体v中定义的有符号值
    #define dictGetUnsignedIntegerVal(he) ((he)->v.u64)  //获取dicEntry中共用体v中定义的无符号值
    #define dictGetDoubleVal(he) ((he)->v.d)  //获取dicEntry中共用体v中定义的double类型值
    #define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)  //获取dict字典中总的表大小
    #define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)   //获取dict字典中总的表的总正在被使用的数量
    #define dictIsRehashing(d) ((d)->rehashidx != -1)   //字典有无被重定位过
    
    /* API */
    dict *dictCreate(dictType *type, void *privDataPtr);   //创建dict字典总类
    int dictExpand(dict *d, unsigned long size);    //字典扩增方法
    int dictAdd(dict *d, void *key, void *val);    //字典根据key, val添加一个字典集
    dictEntry *dictAddRaw(dict *d, void *key);     //字典添加一个只有key值的dicEntry
    int dictReplace(dict *d, void *key, void *val); //替代dict中一个字典集
    dictEntry *dictReplaceRaw(dict *d, void *key);  //替代dict中的一个字典,只提供一个key值
    int dictDelete(dict *d, const void *key);    //根据key删除一个字典集
    int dictDeleteNoFree(dict *d, const void *key);  //字典集删除无、不调用free方法
    void dictRelease(dict *d);   //释放整个dict
    dictEntry * dictFind(dict *d, const void *key);  //根据key寻找字典集
    void *dictFetchValue(dict *d, const void *key);  //根据key值寻找相应的val值
    int dictResize(dict *d);  //重新计算大小
    dictIterator *dictGetIterator(dict *d); //获取字典迭代器
    dictIterator *dictGetSafeIterator(dict *d);  //获取字典安全迭代器  
    dictEntry *dictNext(dictIterator *iter);   //根据字典迭代器获取字典集的下一字典集
    void dictReleaseIterator(dictIterator *iter); //释放迭代器
    dictEntry *dictGetRandomKey(dict *d);  //随机获取一个字典集
    void dictPrintStats(dict *d);  //打印当前字典状态
    unsigned int dictGenHashFunction(const void *key, int len); //输入的key值,目标长度,此方法帮你计算出索引值
    unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len); //这里提供了一种比较简单的哈希算法
    void dictEmpty(dict *d, void(callback)(void*)); //清空字典
    void dictEnableResize(void);  //启用调整方法
    void dictDisableResize(void); //禁用调整方法
    int dictRehash(dict *d, int n); //hash重定位,主要从旧的表映射到新表中,分n轮定位
    int dictRehashMilliseconds(dict *d, int ms);  //在给定时间内,循环执行哈希重定位
    void dictSetHashFunctionSeed(unsigned int initval); //设置哈希方法种子
    unsigned int dictGetHashFunctionSeed(void);  //获取哈希种子
    unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata); //字典扫描方法
    
    /* Hash table types */
    /* 哈希表类型  */
    extern dictType dictTypeHeapStringCopyKey;
    extern dictType dictTypeHeapStrings;
    extern dictType dictTypeHeapStringCopyKeyValue;
    
    #endif /* __DICT_H */
    </span>

    dict.c;

    <span style="font-size:14px;">/* Hash Tables Implementation.
     *
     * This file implements in memory hash tables with insert/del/replace/find/
     * get-random-element operations. Hash tables will auto resize if needed
     * tables of power of two in size are used, collisions are handled by
     * chaining. See the source code for more information... :)
     *
     * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */
    
    #include "fmacros.h"
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <stdarg.h>
    #include <limits.h>
    #include <sys/time.h>
    #include <ctype.h>
    
    #include "dict.h"
    #include "zmalloc.h"
    #include "redisassert.h"
    
    /* Using dictEnableResize() / dictDisableResize() we make possible to
     * enable/disable resizing of the hash table as needed. This is very important
     * for Redis, as we use copy-on-write and don't want to move too much memory
     * around when there is a child performing saving operations.
     *
     * Note that even when dict_can_resize is set to 0, not all resizes are
     * prevented: a hash table is still allowed to grow if the ratio between
     * the number of elements and the buckets > dict_force_resize_ratio. */
    /* redis用了dictEnableResize() / dictDisableResize()方法可以重新调整哈希表的长度,
     *因为redis采用的是写时复制的算法,不会挪动太多的内存,只有当调整数量大于一定比例才可能有效 */
    static int dict_can_resize = 1;
    static unsigned int dict_force_resize_ratio = 5;
    
    /* -------------------------- private prototypes ---------------------------- */
    /* 私有方法 */
    static int _dictExpandIfNeeded(dict *ht);    //字典是否需要扩展
    static unsigned long _dictNextPower(unsigned long size);
    static int _dictKeyIndex(dict *ht, const void *key);
    static int _dictInit(dict *ht, dictType *type, void *privDataPtr);  //字典初始化方法
    
    /* -------------------------- hash functions -------------------------------- */
    /* 哈希索引计算的方法 */
    
    /* Thomas Wang's 32 bit Mix Function */
    /* Thomas Wang's 32 bit Mix 的哈希算法直接输入key值,获取索引值,据说这种冲突的概率很低 */
    unsigned int dictIntHashFunction(unsigned int key)
    {
        key += ~(key << 15);
        key ^=  (key >> 10);
        key +=  (key << 3);
        key ^=  (key >> 6);
        key += ~(key << 11);
        key ^=  (key >> 16);
        return key;
    }
    
    //哈希方法种子,跟产生随机数的种子作用应该是一样的
    static uint32_t dict_hash_function_seed = 5381;
    
    /* 重设哈希种子 */
    void dictSetHashFunctionSeed(uint32_t seed) {
        dict_hash_function_seed = seed;
    }
    
    /* 获取哈希种子 */
    uint32_t dictGetHashFunctionSeed(void) {
        return dict_hash_function_seed;
    }
    
    /* MurmurHash2, by Austin Appleby
     * Note - This code makes a few assumptions about how your machine behaves -
     * 1. We can read a 4-byte value from any address without crashing
     * 2. sizeof(int) == 4
     *
     * And it has a few limitations -
     *
     * 1. It will not work incrementally.
     * 2. It will not produce the same results on little-endian and big-endian
     *    machines.
     */
    /* 输入的key值,目标长度,此方法帮你计算出索引值,此方法特别表明,
     *	不会因为机器之间高低位存储的不同而产生相同的结果 */
    unsigned int dictGenHashFunction(const void *key, int len) {
        /* 'm' and 'r' are mixing constants generated offline.
         They're not really 'magic', they just happen to work well.  */
        //seed种子,m,r的值都将会参与到计算中
        uint32_t seed = dict_hash_function_seed;
        const uint32_t m = 0x5bd1e995;
        const int r = 24;
    
        /* Initialize the hash to a 'random' value */
        uint32_t h = seed ^ len;
    
        /* Mix 4 bytes at a time into the hash */
        const unsigned char *data = (const unsigned char *)key;
    
        while(len >= 4) {
            uint32_t k = *(uint32_t*)data;
    
            k *= m;
            k ^= k >> r;
            k *= m;
    
            h *= m;
            h ^= k;
    
            data += 4;
            len -= 4;
        }
    
        /* Handle the last few bytes of the input array  */
        switch(len) {
        case 3: h ^= data[2] << 16;
        case 2: h ^= data[1] << 8;
        case 1: h ^= data[0]; h *= m;
        };
    
        /* Do a few final mixes of the hash to ensure the last few
         * bytes are well-incorporated. */
        h ^= h >> 13;
        h *= m;
        h ^= h >> 15;
    
        return (unsigned int)h;
    }
    
    /* And a case insensitive hash function (based on djb hash) */
    /* 这里提供了一种比较简单的哈希算法 */
    unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
    	//以djb hash为基础,俗称“times33”就是不断的乘33
    	//几乎所有的流行的hash map都采用了DJB hash function
        unsigned int hash = (unsigned int)dict_hash_function_seed;
    
        while (len--)
            hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
        return hash;
    }
    
    /* ----------------------------- API implementation ------------------------- */
    
    /* Reset a hash table already initialized with ht_init().
     * NOTE: This function should only be called by ht_destroy(). */
    /* 重置哈希表方法,只在ht_destroy时使用 */
    static void _dictReset(dictht *ht)
    {
    	//清空相应的变量,ht->table的类型其实是dictEntry,叫table名字太有歧义了
        ht->table = NULL;
        ht->size = 0;
        ht->sizemask = 0;
        ht->used = 0;
    }
    
    /* Create a new hash table */
    /* 创建dict操作类 */
    dict *dictCreate(dictType *type,
            void *privDataPtr)
    {
        dict *d = zmalloc(sizeof(*d));
    	
    	//创建好空间之后调用初始化方法
        _dictInit(d,type,privDataPtr);
        return d;
    }
    
    /* Initialize the hash table */
    /* 初始化dict类中的type,ht等变量 */
    int _dictInit(dict *d, dictType *type,
            void *privDataPtr)
    {
    	//重置2个ht哈希表
        _dictReset(&d->ht[0]);
        _dictReset(&d->ht[1]);
        //赋值dictType
        d->type = type;
        d->privdata = privDataPtr;
        //-1代表还没有rehash过,
        d->rehashidx = -1;
        //当前使用中的迭代器为0
        d->iterators = 0;
        
        //返回DICT_OK,代表初始化成功
        return DICT_OK;
    }
    
    /* Resize the table to the minimal size that contains all the elements,
     * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
    /* 调整哈希表,用最少的值容纳所有的字典集合 */
    int dictResize(dict *d)
    {
        int minimal;
    
    	//如果系统默认调整值不大于0或已经调rehash过的就提示出错,拒绝操作
        if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
        
        //最少数等于哈希标准鸿正在使用的数
        minimal = d->ht[0].used;
        if (minimal < DICT_HT_INITIAL_SIZE)
            minimal = DICT_HT_INITIAL_SIZE;
        
        //调用expand扩容
        return dictExpand(d, minimal);
    }
    
    /* Expand or create the hash table */
    /* 哈希表扩增方法 */
    int dictExpand(dict *d, unsigned long size)
    {
        dictht n; /* the new hash table */
        //获取调整值,以2的幂次向上取
        unsigned long realsize = _dictNextPower(size);
    
        /* the size is invalid if it is smaller than the number of
         * elements already inside the hash table */
         //再次判断数量符合不符合
        if (dictIsRehashing(d) || d->ht[0].used > size)
            return DICT_ERR;
    
        /* Allocate the new hash table and initialize all pointers to NULL */
        //初始化大小
        n.size = realsize;
        n.sizemask = realsize-1;
        //为表格申请realsize个字典集的大小
        n.table = zcalloc(realsize*sizeof(dictEntry*));
        n.used = 0;
    
        /* Is this the first initialization? If so it's not really a rehashing
         * we just set the first hash table so that it can accept keys. */
        if (d->ht[0].table == NULL) {
            d->ht[0] = n;
            return DICT_OK;
        }
    
        /* Prepare a second hash table for incremental rehashing */
       	//赋值给第二张表格
        d->ht[1] = n;
        d->rehashidx = 0;
        return DICT_OK;
    }
    
    /* Performs N steps of incremental rehashing. Returns 1 if there are still
     * keys to move from the old to the new hash table, otherwise 0 is returned.
     * Note that a rehashing step consists in moving a bucket (that may have more
     * than one key as we use chaining) from the old to the new hash table. */
    /* hash重定位,主要从旧的表映射到新表中
     * 如果返回1说明旧的表中还存在key迁移到新表中,0代表没有 */
    int dictRehash(dict *d, int n) {
        if (!dictIsRehashing(d)) return 0;
    	
    	/* 根据参数分n步多次循环操作 */
        while(n--) {
            dictEntry *de, *nextde;
    
            /* Check if we already rehashed the whole table... */
            if (d->ht[0].used == 0) {
                zfree(d->ht[0].table);
                d->ht[0] = d->ht[1];
                _dictReset(&d->ht[1]);
                d->rehashidx = -1;
                return 0;
            }
    
            /* Note that rehashidx can't overflow as we are sure there are more
             * elements because ht[0].used != 0 */
            assert(d->ht[0].size > (unsigned long)d->rehashidx);
            while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
            de = d->ht[0].table[d->rehashidx];
            /* Move all the keys in this bucket from the old to the new hash HT */
            /* 移动的关键操作 */
            while(de) {
                unsigned int h;
    
                nextde = de->next;
                /* Get the index in the new hash table */
                h = dictHashKey(d, de->key) & d->ht[1].sizemask;
                de->next = d->ht[1].table[h];
                d->ht[1].table[h] = de;
                d->ht[0].used--;
                d->ht[1].used++;
                de = nextde;
            }
            d->ht[0].table[d->rehashidx] = NULL;
            d->rehashidx++;
        }
        return 1;
    }
    
    /* 获取当前毫秒的时间 */
    long long timeInMilliseconds(void) {
        struct timeval tv;
    
        gettimeofday(&tv,NULL);
        return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
    }
    
    /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
    /* 在给定时间内,循环执行哈希重定位 */
    int dictRehashMilliseconds(dict *d, int ms) {
        long long start = timeInMilliseconds();
        int rehashes = 0;
    
        while(dictRehash(d,100)) {
        	//重定位的次数累加
            rehashes += 100;
            //时间超出给定时间范围,则终止
            if (timeInMilliseconds()-start > ms) break;
        }
        return rehashes;
    }
    
    /* This function performs just a step of rehashing, and only if there are
     * no safe iterators bound to our hash table. When we have iterators in the
     * middle of a rehashing we can't mess with the two hash tables otherwise
     * some element can be missed or duplicated.
     *
     * This function is called by common lookup or update operations in the
     * dictionary so that the hash table automatically migrates from H1 to H2
     * while it is actively used. */
    /* 当没有迭代器时候,进行重定位算法 */
    static void _dictRehashStep(dict *d) {
        if (d->iterators == 0) dictRehash(d,1);
    }
    
    /* Add an element to the target hash table */
    /* 添加一个dicEntry */
    int dictAdd(dict *d, void *key, void *val)
    {
        dictEntry *entry = dictAddRaw(d,key);
    
        if (!entry) return DICT_ERR;
        dictSetVal(d, entry, val);
        return DICT_OK;
    }
    
    /* Low level add. This function adds the entry but instead of setting
     * a value returns the dictEntry structure to the user, that will make
     * sure to fill the value field as he wishes.
     *
     * This function is also directly exposed to user API to be called
     * mainly in order to store non-pointers inside the hash value, example:
     *
     * entry = dictAddRaw(dict,mykey);
     * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
     *
     * Return values:
     *
     * If key already exists NULL is returned.
     * If key was added, the hash entry is returned to be manipulated by the caller.
     */
    /* 添加一个指定key值的Entry */
    dictEntry *dictAddRaw(dict *d, void *key)
    {
        int index;
        dictEntry *entry;
        dictht *ht;
    
        if (dictIsRehashing(d)) _dictRehashStep(d);
    
        /* Get the index of the new element, or -1 if
         * the element already exists. */
        /* 如果指定的key已经存在,则直接返回NULL说明添加失败 */
        if ((index = _dictKeyIndex(d, key)) == -1)
            return NULL;
    
        /* Allocate the memory and store the new entry */
        ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
        entry = zmalloc(sizeof(*entry));
        entry->next = ht->table[index];
        ht->table[index] = entry;
        ht->used++;
    
        /* Set the hash entry fields. */
        dictSetKey(d, entry, key);
        return entry;
    }
    
    /* Add an element, discarding the old if the key already exists.
     * Return 1 if the key was added from scratch, 0 if there was already an
     * element with such key and dictReplace() just performed a value update
     * operation. */
    /* 替换一个子字典集,如果不存在直接添加,存在,覆盖val的值 */
    int dictReplace(dict *d, void *key, void *val)
    {
        dictEntry *entry, auxentry;
    
        /* Try to add the element. If the key
         * does not exists dictAdd will suceed. */
        //不存在,这个key直接添加
        if (dictAdd(d, key, val) == DICT_OK)
            return 1;
        /* It already exists, get the entry */
        entry = dictFind(d, key);
        /* Set the new value and free the old one. Note that it is important
         * to do that in this order, as the value may just be exactly the same
         * as the previous one. In this context, think to reference counting,
         * you want to increment (set), and then decrement (free), and not the
         * reverse. */
        //赋值方法
        auxentry = *entry;
        dictSetVal(d, entry, val);
        dictFreeVal(d, &auxentry);
        return 0;
    }
    
    /* dictReplaceRaw() is simply a version of dictAddRaw() that always
     * returns the hash entry of the specified key, even if the key already
     * exists and can't be added (in that case the entry of the already
     * existing key is returned.)
     *
     * See dictAddRaw() for more information. */
    /* 添加字典,没有函数方法,如果存在,就不添加 */
    dictEntry *dictReplaceRaw(dict *d, void *key) {
        dictEntry *entry = dictFind(d,key);
    
        return entry ? entry : dictAddRaw(d,key);
    }
    
    /* Search and remove an element */
    /* 删除给定key的结点,可控制是否调用释放方法 */
    static int dictGenericDelete(dict *d, const void *key, int nofree)
    {
        unsigned int h, idx;
        dictEntry *he, *prevHe;
        int table;
    
        if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
        if (dictIsRehashing(d)) _dictRehashStep(d);
        //计算key对应的哈希索引
        h = dictHashKey(d, key);
    
        for (table = 0; table <= 1; table++) {
            idx = h & d->ht[table].sizemask;
            //找到具体的索引对应的结点
            he = d->ht[table].table[idx];
            prevHe = NULL;
            while(he) {
                if (dictCompareKeys(d, key, he->key)) {
                    /* Unlink the element from the list */
                    if (prevHe)
                        prevHe->next = he->next;
                    else
                        d->ht[table].table[idx] = he->next;
                    if (!nofree) {
                    	//判断是否需要调用dict定义的free方法
                        dictFreeKey(d, he);
                        dictFreeVal(d, he);
                    }
                    zfree(he);
                    d->ht[table].used--;
                    return DICT_OK;
                }
                prevHe = he;
                he = he->next;
            }
            if (!dictIsRehashing(d)) break;
        }
        return DICT_ERR; /* not found */
    }
    
    /* 会调用free方法的删除方法 */
    int dictDelete(dict *ht, const void *key) {
        return dictGenericDelete(ht,key,0);
    }
    
    /* 不会调用free方法的删除方法 */
    int dictDeleteNoFree(dict *ht, const void *key) {
        return dictGenericDelete(ht,key,1);
    }
    
    /* Destroy an entire dictionary */
    /* 清空整个哈希表 */
    int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
        unsigned long i;
    
        /* Free all the elements */
        for (i = 0; i < ht->size && ht->used > 0; i++) {
            dictEntry *he, *nextHe;
    
    		//每次情况会调用回调方法
            if (callback && (i & 65535) == 0) callback(d->privdata);
    
            if ((he = ht->table[i]) == NULL) continue;
            while(he) {
            	//依次释放结点
                nextHe = he->next;
                dictFreeKey(d, he);
                dictFreeVal(d, he);
                zfree(he);
                ht->used--;
                he = nextHe;
            }
        }
        /* Free the table and the allocated cache structure */
        zfree(ht->table);
        /* Re-initialize the table */
        _dictReset(ht);
        return DICT_OK; /* never fails */
    }
    
    /* Clear & Release the hash table */
    /* 重置字典总类,清空2张表 */
    void dictRelease(dict *d)
    {
        _dictClear(d,&d->ht[0],NULL);
        _dictClear(d,&d->ht[1],NULL);
        zfree(d);
    }
    
    /* 根据key返回具体的字典集 */
    dictEntry *dictFind(dict *d, const void *key)
    {
        dictEntry *he;
        unsigned int h, idx, table;
    
        if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
        if (dictIsRehashing(d)) _dictRehashStep(d);
        h = dictHashKey(d, key);
        for (table = 0; table <= 1; table++) {
            idx = h & d->ht[table].sizemask;
            he = d->ht[table].table[idx];
            while(he) {
                if (dictCompareKeys(d, key, he->key))
                    return he;
                he = he->next;
            }
            if (!dictIsRehashing(d)) return NULL;
        }
        return NULL;
    }
    
    /* 获取目标字典集的方法 */
    void *dictFetchValue(dict *d, const void *key) {
        dictEntry *he;
    
        he = dictFind(d,key);
        /* 获取字典集的方法 */
        return he ? dictGetVal(he) : NULL;
    }
    
    /* A fingerprint is a 64 bit number that represents the state of the dictionary
     * at a given time, it's just a few dict properties xored together.
     * When an unsafe iterator is initialized, we get the dict fingerprint, and check
     * the fingerprint again when the iterator is released.
     * If the two fingerprints are different it means that the user of the iterator
     * performed forbidden operations against the dictionary while iterating. */
    /* 通过指纹来禁止每个不安全的哈希迭代器的非法操作,每个不安全迭代器只能有一个指纹 */
    long long dictFingerprint(dict *d) {
        long long integers[6], hash = 0;
        int j;
    
        integers[0] = (long) d->ht[0].table;
        integers[1] = d->ht[0].size;
        integers[2] = d->ht[0].used;
        integers[3] = (long) d->ht[1].table;
        integers[4] = d->ht[1].size;
        integers[5] = d->ht[1].used;
    
        /* We hash N integers by summing every successive integer with the integer
         * hashing of the previous sum. Basically:
         *
         * Result = hash(hash(hash(int1)+int2)+int3) ...
         *
         * This way the same set of integers in a different order will (likely) hash
         * to a different number. */
        for (j = 0; j < 6; j++) {
            hash += integers[j];
            /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
            hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
            hash = hash ^ (hash >> 24);
            hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
            hash = hash ^ (hash >> 14);
            hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
            hash = hash ^ (hash >> 28);
            hash = hash + (hash << 31);
        }
        return hash;
    }
    
    /* 获取哈希迭代器,默认不安全的 */
    dictIterator *dictGetIterator(dict *d)
    {
        dictIterator *iter = zmalloc(sizeof(*iter));
    
        iter->d = d;
        iter->table = 0;
        iter->index = -1;
        iter->safe = 0;
        iter->entry = NULL;
        iter->nextEntry = NULL;
        return iter;
    }
    
    /* 获取安全哈希迭代器 */
    dictIterator *dictGetSafeIterator(dict *d) {
        dictIterator *i = dictGetIterator(d);
    
        i->safe = 1;
        return i;
    }
    
    /* 迭代器获取下一个集合点 */
    dictEntry *dictNext(dictIterator *iter)
    {
        while (1) {
            if (iter->entry == NULL) {
                dictht *ht = &iter->d->ht[iter->table];
                if (iter->index == -1 && iter->table == 0) {
                	//如果迭代器index下标为-1说明还没开始使用,设置迭代器的指纹或增加引用计数量
                    if (iter->safe)
                        iter->d->iterators++;
                    else
                        iter->fingerprint = dictFingerprint(iter->d);
                }
                //迭代器下标递增
                iter->index++;
                if (iter->index >= (long) ht->size) {
                    if (dictIsRehashing(iter->d) && iter->table == 0) {
                        iter->table++;
                        iter->index = 0;
                        ht = &iter->d->ht[1];
                    } else {
                        break;
                    }
                }
                //根据下标选择集合点
                iter->entry = ht->table[iter->index];
            } else {
                iter->entry = iter->nextEntry;
            }
            if (iter->entry) {
                /* We need to save the 'next' here, the iterator user
                 * may delete the entry we are returning. */
                iter->nextEntry = iter->entry->next;
                return iter->entry;
            }
        }
        return NULL;
    }
    
    /* 释放迭代器 */
    void dictReleaseIterator(dictIterator *iter)
    {
        if (!(iter->index == -1 && iter->table == 0)) {
            if (iter->safe)
                iter->d->iterators--;
            else
            	//这时判断指纹是否还是之前定义的那个
                assert(iter->fingerprint == dictFingerprint(iter->d));
        }
        zfree(iter);
    }
    
    /* Return a random entry from the hash table. Useful to
     * implement randomized algorithms */
    /* 随机获取一个集合点 */
    dictEntry *dictGetRandomKey(dict *d)
    {
        dictEntry *he, *orighe;
        unsigned int h;
        int listlen, listele;
    
        if (dictSize(d) == 0) return NULL;
        if (dictIsRehashing(d)) _dictRehashStep(d);
        if (dictIsRehashing(d)) {
            do {
            	//随机数向2个表格的总数求余运算
                h = random() % (d->ht[0].size+d->ht[1].size);
                he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
                                          d->ht[0].table[h];
            } while(he == NULL);
        } else {
            do {
                h = random() & d->ht[0].sizemask;
                he = d->ht[0].table[h];
            } while(he == NULL);
        }
    
        /* Now we found a non empty bucket, but it is a linked
         * list and we need to get a random element from the list.
         * The only sane way to do so is counting the elements and
         * select a random index. */
        listlen = 0;
        orighe = he;
        while(he) {
            he = he->next;
            listlen++;
        }
        listele = random() % listlen;
        he = orighe;
        while(listele--) he = he->next;
        return he;
    }
    
    /* Function to reverse bits. Algorithm from:
     * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
    /* 很神奇的翻转位 */
    static unsigned long rev(unsigned long v) {
        unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
        unsigned long mask = ~0;
        while ((s >>= 1) > 0) {
            mask ^= (mask << s);
            v = ((v >> s) & mask) | ((v << s) & ~mask);
        }
        return v;
    }
    
    /* dictScan() is used to iterate over the elements of a dictionary.
     *
     * Iterating works in the following way:
     *
     * 1) Initially you call the function using a cursor (v) value of 0.
     * 2) The function performs one step of the iteration, and returns the
     *    new cursor value that you must use in the next call.
     * 3) When the returned cursor is 0, the iteration is complete.
     *
     * The function guarantees that all the elements that are present in the
     * dictionary from the start to the end of the iteration are returned.
     * However it is possible that some element is returned multiple time.
     *
     * For every element returned, the callback 'fn' passed as argument is
     * called, with 'privdata' as first argument and the dictionar entry
     * 'de' as second argument.
     *
     * HOW IT WORKS.
     *
     * The algorithm used in the iteration was designed by Pieter Noordhuis.
     * The main idea is to increment a cursor starting from the higher order
     * bits, that is, instead of incrementing the cursor normally, the bits
     * of the cursor are reversed, then the cursor is incremented, and finally
     * the bits are reversed again.
     *
     * This strategy is needed because the hash table may be resized from one
     * call to the other call of the same iteration.
     *
     * dict.c hash tables are always power of two in size, and they
     * use chaining, so the position of an element in a given table is given
     * always by computing the bitwise AND between Hash(key) and SIZE-1
     * (where SIZE-1 is always the mask that is equivalent to taking the rest
     *  of the division between the Hash of the key and SIZE).
     *
     * For example if the current hash table size is 16, the mask is
     * (in binary) 1111. The position of a key in the hash table will be always
     * the last four bits of the hash output, and so forth.
     *
     * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
     *
     * If the hash table grows, elements can go anyway in one multiple of
     * the old bucket: for example let's say that we already iterated with
     * a 4 bit cursor 1100, since the mask is 1111 (hash table size = 16).
     *
     * If the hash table will be resized to 64 elements, and the new mask will
     * be 111111, the new buckets that you obtain substituting in ??1100
     * either 0 or 1, can be targeted only by keys that we already visited
     * when scanning the bucket 1100 in the smaller hash table.
     *
     * By iterating the higher bits first, because of the inverted counter, the
     * cursor does not need to restart if the table size gets bigger, and will
     * just continue iterating with cursors that don't have '1100' at the end,
     * nor any other combination of final 4 bits already explored.
     *
     * Similarly when the table size shrinks over time, for example going from
     * 16 to 8, If a combination of the lower three bits (the mask for size 8
     * is 111) was already completely explored, it will not be visited again
     * as we are sure that, we tried for example, both 0111 and 1111 (all the
     * variations of the higher bit) so we don't need to test it again.
     *
     * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
     *
     * Yes, this is true, but we always iterate the smaller one of the tables,
     * testing also all the expansions of the current cursor into the larger
     * table. So for example if the current cursor is 101 and we also have a
     * larger table of size 16, we also test (0)101 and (1)101 inside the larger
     * table. This reduces the problem back to having only one table, where
     * the larger one, if exists, is just an expansion of the smaller one.
     *
     * LIMITATIONS
     *
     * This iterator is completely stateless, and this is a huge advantage,
     * including no additional memory used.
     *
     * The disadvantages resulting from this design are:
     *
     * 1) It is possible that we return duplicated elements. However this is usually
     *    easy to deal with in the application level.
     * 2) The iterator must return multiple elements per call, as it needs to always
     *    return all the keys chained in a given bucket, and all the expansions, so
     *    we are sure we don't miss keys moving.
     * 3) The reverse cursor is somewhat hard to understand at first, but this
     *    comment is supposed to help.
     */
    /* 扫描方法 */
    unsigned long dictScan(dict *d,
                           unsigned long v,
                           dictScanFunction *fn,
                           void *privdata)
    {
        dictht *t0, *t1;
        const dictEntry *de;
        unsigned long m0, m1;
    
        if (dictSize(d) == 0) return 0;
    
        if (!dictIsRehashing(d)) {
            t0 = &(d->ht[0]);
            m0 = t0->sizemask;
    
            /* Emit entries at cursor */
            de = t0->table[v & m0];
            while (de) {
                fn(privdata, de);
                de = de->next;
            }
    
        } else {
            t0 = &d->ht[0];
            t1 = &d->ht[1];
    
            /* Make sure t0 is the smaller and t1 is the bigger table */
            if (t0->size > t1->size) {
                t0 = &d->ht[1];
                t1 = &d->ht[0];
            }
    
            m0 = t0->sizemask;
            m1 = t1->sizemask;
    
            /* Emit entries at cursor */
            de = t0->table[v & m0];
            while (de) {
                fn(privdata, de);
                de = de->next;
            }
    
            /* Iterate over indices in larger table that are the expansion
             * of the index pointed to by the cursor in the smaller table */
            do {
                /* Emit entries at cursor */
                de = t1->table[v & m1];
                while (de) {
                    fn(privdata, de);
                    de = de->next;
                }
    
                /* Increment bits not covered by the smaller mask */
                v = (((v | m0) + 1) & ~m0) | (v & m0);
    
                /* Continue while bits covered by mask difference is non-zero */
            } while (v & (m0 ^ m1));
        }
    
        /* Set unmasked bits so incrementing the reversed cursor
         * operates on the masked bits of the smaller table */
        v |= ~m0;
    
        /* Increment the reverse cursor */
        v = rev(v);
        v++;
        v = rev(v);
    
        return v;
    }
    
    /* ------------------------- private functions ------------------------------ */
    
    /* Expand the hash table if needed */
    /* 判断是否需要扩容 */
    static int _dictExpandIfNeeded(dict *d)
    {
        /* Incremental rehashing already in progress. Return. */
        if (dictIsRehashing(d)) return DICT_OK;
    
        /* If the hash table is empty expand it to the initial size. */
        if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
    
        /* If we reached the 1:1 ratio, and we are allowed to resize the hash
         * table (global setting) or we should avoid it but the ratio between
         * elements/buckets is over the "safe" threshold, we resize doubling
         * the number of buckets. */
        /* 判断是否需要扩容 */
        if (d->ht[0].used >= d->ht[0].size &&
            (dict_can_resize ||
             d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
        {
            return dictExpand(d, d->ht[0].used*2);
        }
        return DICT_OK;
    }
    
    /* Our hash table capability is a power of two */
    /* 哈希表的容量以2的幂次方,所以数量以2的幂次向上取 */
    static unsigned long _dictNextPower(unsigned long size)
    {
        unsigned long i = DICT_HT_INITIAL_SIZE;
    
        if (size >= LONG_MAX) return LONG_MAX;
        while(1) {
            if (i >= size)
                return i;
            i *= 2;
        }
    }
    
    /* Returns the index of a free slot that can be populated with
     * a hash entry for the given 'key'.
     * If the key already exists, -1 is returned.
     *
     * Note that if we are in the process of rehashing the hash table, the
     * index is always returned in the context of the second (new) hash table. */
    /* 获取key值对应的哈希索引值,如果已经存在此key则返回-1 */
    static int _dictKeyIndex(dict *d, const void *key)
    {
        unsigned int h, idx, table;
        dictEntry *he;
    
        /* Expand the hash table if needed */
        if (_dictExpandIfNeeded(d) == DICT_ERR)
            return -1;
        /* Compute the key hash value */
        h = dictHashKey(d, key);
        for (table = 0; table <= 1; table++) {
            idx = h & d->ht[table].sizemask;
            /* Search if this slot does not already contain the given key */
            he = d->ht[table].table[idx];
            while(he) {
                if (dictCompareKeys(d, key, he->key))
                    return -1;
                he = he->next;
            }
            if (!dictIsRehashing(d)) break;
        }
        return idx;
    }
    
    /* 清空整个字典,即清空里面的2张哈希表 */
    void dictEmpty(dict *d, void(callback)(void*)) {
        _dictClear(d,&d->ht[0],callback);
        _dictClear(d,&d->ht[1],callback);
        d->rehashidx = -1;
        d->iterators = 0;
    }
    
    /*启用哈希表调整*/
    void dictEnableResize(void) {
        dict_can_resize = 1;
    }
    
    /* 启用哈希表调整 */
    void dictDisableResize(void) {
        dict_can_resize = 0;
    }
    
    #if 0
    
    /* The following is code that we don't use for Redis currently, but that is part
    of the library. */
    /* redis中还存着调试的代码 */
    /* ----------------------- Debugging ------------------------*/
    
    #define DICT_STATS_VECTLEN 50
    static void _dictPrintStatsHt(dictht *ht) {
        unsigned long i, slots = 0, chainlen, maxchainlen = 0;
        unsigned long totchainlen = 0;
        unsigned long clvector[DICT_STATS_VECTLEN];
    
        if (ht->used == 0) {
            printf("No stats available for empty dictionaries
    ");
            return;
        }
    
        for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
        for (i = 0; i < ht->size; i++) {
            dictEntry *he;
    
            if (ht->table[i] == NULL) {
                clvector[0]++;
                continue;
            }
            slots++;
            /* For each hash entry on this slot... */
            chainlen = 0;
            he = ht->table[i];
            while(he) {
                chainlen++;
                he = he->next;
            }
            clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
            if (chainlen > maxchainlen) maxchainlen = chainlen;
            totchainlen += chainlen;
        }
        printf("Hash table stats:
    ");
        printf(" table size: %ld
    ", ht->size);
        printf(" number of elements: %ld
    ", ht->used);
        printf(" different slots: %ld
    ", slots);
        printf(" max chain length: %ld
    ", maxchainlen);
        printf(" avg chain length (counted): %.02f
    ", (float)totchainlen/slots);
        printf(" avg chain length (computed): %.02f
    ", (float)ht->used/slots);
        printf(" Chain length distribution:
    ");
        for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
            if (clvector[i] == 0) continue;
            printf("   %s%ld: %ld (%.02f%%)
    ",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
        }
    }
    
    void dictPrintStats(dict *d) {
        _dictPrintStatsHt(&d->ht[0]);
        if (dictIsRehashing(d)) {
            printf("-- Rehashing into ht[1]:
    ");
            _dictPrintStatsHt(&d->ht[1]);
        }
    }
    
    /* ----------------------- StringCopy Hash Table Type ------------------------*/
    
    static unsigned int _dictStringCopyHTHashFunction(const void *key)
    {
        return dictGenHashFunction(key, strlen(key));
    }
    
    static void *_dictStringDup(void *privdata, const void *key)
    {
        int len = strlen(key);
        char *copy = zmalloc(len+1);
        DICT_NOTUSED(privdata);
    
        memcpy(copy, key, len);
        copy[len] = '';
        return copy;
    }
    
    static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
            const void *key2)
    {
        DICT_NOTUSED(privdata);
    
        return strcmp(key1, key2) == 0;
    }
    
    static void _dictStringDestructor(void *privdata, void *key)
    {
        DICT_NOTUSED(privdata);
    
        zfree(key);
    }
    
    /* 定义了3种类型的dictType,有些类型无val dup方法的定义 */
    dictType dictTypeHeapStringCopyKey = {
        _dictStringCopyHTHashFunction, /* hash function */
        _dictStringDup,                /* key dup */
        NULL,                          /* val dup */
        _dictStringCopyHTKeyCompare,   /* key compare */
        _dictStringDestructor,         /* key destructor */
        NULL                           /* val destructor */
    };
    
    /* This is like StringCopy but does not auto-duplicate the key.
     * It's used for intepreter's shared strings. */
    dictType dictTypeHeapStrings = {
        _dictStringCopyHTHashFunction, /* hash function */
        NULL,                          /* key dup */
        NULL,                          /* val dup */
        _dictStringCopyHTKeyCompare,   /* key compare */
        _dictStringDestructor,         /* key destructor */
        NULL                           /* val destructor */
    };
    
    /* This is like StringCopy but also automatically handle dynamic
     * allocated C strings as values. */
    dictType dictTypeHeapStringCopyKeyValue = {
        _dictStringCopyHTHashFunction, /* hash function */
        _dictStringDup,                /* key dup */
        _dictStringDup,                /* val dup */
        _dictStringCopyHTKeyCompare,   /* key compare */
        _dictStringDestructor,         /* key destructor */
        _dictStringDestructor,         /* val destructor */
    };
    #endif
    </span>

    哈希算法的索引计算其实我还是有点不理解的地方的,比如他的索引计算,会从一张旧表映射到一个新表,作者出于什么目的,也许以后再看的时候才会明白吧。

  • 相关阅读:
    在Win10中通过命令行打开UWP应用
    前端学习Docker
    Puppeteer的使用
    taro教程
    22种开源Vue模板和主题框架「干货」
    36种免费React模板和主题「干货」
    移动端1px显示异常解决方案
    前端性能优化(二)
    Vue.set()和this.$set()源码解析
    2018年8月7日 乐视2 X621 刷机包下载链接
  • 原文地址:https://www.cnblogs.com/bianqi/p/12184298.html
Copyright © 2020-2023  润新知