• Hadoop RPC通信Client客户端的流程分析


                Hadoop的RPC的通信与其他系统的RPC通信不太一样,作者针对Hadoop的使用特点,专门的设计了一套RPC框架,这套框架个人感觉还是有点小复杂的。所以我打算分成Client客户端和Server服务端2个模块做分析。如果你对RPC的整套流程已经非常了解的前提下,对于Hadoop的RPC,你也一定可以非常迅速的了解的。OK,下面切入正题。

                Hadoop的RPC的相关代码都在org.apache.hadoop.ipc的包下,首先RPC的通信必须遵守许多的协议,其中最最基本的协议即使如下;

    /**
     * Superclass of all protocols that use Hadoop RPC.
     * Subclasses of this interface are also supposed to have
     * a static final long versionID field.
     * Hadoop RPC所有协议的基类,返回协议版本号
     */
    public interface VersionedProtocol {
      
      /**
       * Return protocol version corresponding to protocol interface.
       * @param protocol The classname of the protocol interface
       * @param clientVersion The version of the protocol that the client speaks
       * @return the version that the server will speak
       */
      public long getProtocolVersion(String protocol, 
                                     long clientVersion) throws IOException;
    }

    他是所有协议的基类,他的下面还有一堆的子类,分别对应于不同情况之间的通信,下面是一张父子类图:

              

     顾名思义,只有客户端和服务端遵循相同的版本号,才能进行通信。

               RPC客户端的所有相关操作都被封装在了一个叫Client.java的文件中:

    /** A client for an IPC service.  IPC calls take a single {@link Writable} as a
     * parameter, and return a {@link Writable} as their value.  A service runs on
     * a port and is defined by a parameter class and a value class.
     * RPC客户端类
     * @see Server
     */
    public class Client {
      
      public static final Log LOG =
        LogFactory.getLog(Client.class);
      //客户端到服务端的连接
      private Hashtable<ConnectionId, Connection> connections =
        new Hashtable<ConnectionId, Connection>();
    
      //回调值类
      private Class<? extends Writable> valueClass;   // class of call values
      //call回调id的计数器
      private int counter;                            // counter for call ids
      //原子变量判断客户端是否还在运行
      private AtomicBoolean running = new AtomicBoolean(true); // if client runs
      final private Configuration conf;
    
      //socket工厂,用来创建socket
      private SocketFactory socketFactory;           // how to create sockets
      private int refCount = 1;
      ......
    从代码中明显的看到,这里存在着一个类似于connections连接池的东西,其实这暗示着连接是可以被复用的,在hashtable中,与每个Connecttion连接的对应的是一个ConnectionId,显然这里不是一个Long类似的数值:

    /**
        * This class holds the address and the user ticket. The client connections
        * to servers are uniquely identified by <remoteAddress, protocol, ticket>
        * 连接的唯一标识,主要通过<远程地址,协议类型,用户组信息>
        */
       static class ConnectionId {
    	 //远程的socket地址
         InetSocketAddress address;
         //用户组信息
         UserGroupInformation ticket;
         //协议类型
         Class<?> protocol;
         private static final int PRIME = 16777619;
         private int rpcTimeout;
         private String serverPrincipal;
         private int maxIdleTime; //connections will be culled if it was idle for 
         //maxIdleTime msecs
         private int maxRetries; //the max. no. of retries for socket connections
         private boolean tcpNoDelay; // if T then disable Nagle's Algorithm
         private int pingInterval; // how often sends ping to the server in msecs
         ....
    这里用了3个属性组成唯一的标识属性,为了保证可以进行ID的复用,所以作者对ConnectionId的equal比较方法和hashCode 进行了重写:

    /**
          * 作者重写了equal比较方法,只要成员变量都想等也就想到了
          */
         @Override
         public boolean equals(Object obj) {
           if (obj == this) {
             return true;
           }
           if (obj instanceof ConnectionId) {
             ConnectionId that = (ConnectionId) obj;
             return isEqual(this.address, that.address)
                 && this.maxIdleTime == that.maxIdleTime
                 && this.maxRetries == that.maxRetries
                 && this.pingInterval == that.pingInterval
                 && isEqual(this.protocol, that.protocol)
                 && this.rpcTimeout == that.rpcTimeout
                 && isEqual(this.serverPrincipal, that.serverPrincipal)
                 && this.tcpNoDelay == that.tcpNoDelay
                 && isEqual(this.ticket, that.ticket);
           }
           return false;
         }
         
         /**
          * 重写了hashCode的生成规则,保证不同的对象产生不同的hashCode值
          */
         @Override
         public int hashCode() {
           int result = 1;
           result = PRIME * result + ((address == null) ? 0 : address.hashCode());
           result = PRIME * result + maxIdleTime;
           result = PRIME * result + maxRetries;
           result = PRIME * result + pingInterval;
           result = PRIME * result + ((protocol == null) ? 0 : protocol.hashCode());
           result = PRIME * rpcTimeout;
           result = PRIME * result
               + ((serverPrincipal == null) ? 0 : serverPrincipal.hashCode());
           result = PRIME * result + (tcpNoDelay ? 1231 : 1237);
           result = PRIME * result + ((ticket == null) ? 0 : ticket.hashCode());
           return result;
         }
    这样就能保证对应同类型的连接就能够完全复用了,而不是仅仅凭借引用的关系判断对象是否相等,这里就是一个不错的设计了

                与连接Id对应的就是Connection了,它里面维护是一下的一些变量;

      /** Thread that reads responses and notifies callers.  Each connection owns a
       * socket connected to a remote address.  Calls are multiplexed through this
       * socket: responses may be delivered out of order. */
      private class Connection extends Thread {
    	//所连接的服务器地址
        private InetSocketAddress server;             // server ip:port
        //服务端的krb5的名字,与安全方面相关
        private String serverPrincipal;  // server's krb5 principal name
        //连接头部,内部包含了,所用的协议,客户端用户组信息以及验证的而方法
        private ConnectionHeader header;              // connection header
        //远程连接ID 
        private final ConnectionId remoteId;                // connection id
        //连接验证方法
        private AuthMethod authMethod; // authentication method
        //下面3个变量都是安全方面的
        private boolean useSasl;
        private Token<? extends TokenIdentifier> token;
        private SaslRpcClient saslRpcClient;
        
        //下面是一组socket通信方面的变量
        private Socket socket = null;                 // connected socket
        private DataInputStream in;
        private DataOutputStream out;
        private int rpcTimeout;
        private int maxIdleTime; //connections will be culled if it was idle for
             //maxIdleTime msecs
        private int maxRetries; //the max. no. of retries for socket connections
        //tcpNoDelay可设置是否阻塞模式
        private boolean tcpNoDelay; // if T then disable Nagle's Algorithm
        private int pingInterval; // how often sends ping to the server in msecs
        
        // currently active calls 当前活跃的回调,一个连接 可能会有很多个call回调
        private Hashtable<Integer, Call> calls = new Hashtable<Integer, Call>();
        //最后一次IO活动通信的时间
        private AtomicLong lastActivity = new AtomicLong();// last I/O activity time
        //连接关闭标记
        private AtomicBoolean shouldCloseConnection = new AtomicBoolean();  // indicate if the connection is closed
        private IOException closeException; // close reason
        .....
    里面维护了大量的和连接通信相关的变量,在这里有一个很有意思的东西connectionHeader,连接头部,里面的数据时为了在通信最开始的时候被使用:

    class ConnectionHeader implements Writable {
      public static final Log LOG = LogFactory.getLog(ConnectionHeader.class);
      
      //客户端和服务端通信的协议名称
      private String protocol;
      //客户端的用户组信息
      private UserGroupInformation ugi = null;
      //验证的方式,关系到写入数据的时的格式
      private AuthMethod authMethod;
      .....
    起到标识验证的作用。一个Client类的基本结构我们基本可以描绘出来了,下面是完整的类关系图:


    在上面这幅图中,你肯定会发现我少了一个很关键的类了,就是Call回调类。Call回调在很多异步通信中是经常出现的。因为在通信过程中,当一个对象通过网络发送请求给另外一个对象的时候,如果采用同步的方式,会一直阻塞在那里,会带来非常不好的效率和体验的,所以很多时候,我们采用的是一种叫回调接口的方式。在这期间,用户可以继续做自己的事情。所以同样的Call这个概念当然也是适用在Hadoop RPC中。在Hadoop的RPC的核心调用原理, 简单的说,就是我把parame参数序列化到一个对象中,通过参数的形式把对象传入,进行RPC通信,最后服务端把处理好的结果值放入call对象,在返回给客户端,也就是说客户端和服务端都是通过Call对象进行操作,Call里面存着,请求的参数,和处理后的结构值2个变量。通过Call对象的封装,客户单实现了完美的无须知道细节的调用。下面是Call类的类按时

      /** A call waiting for a value. */
      //客户端的一个回调
      private class Call {
    	//回调ID
        int id;                                       // call id
        //被序列化的参数
        Writable param;                               // parameter
        //返回值
        Writable value;                               // value, null if error
        //出错时返回的异常
        IOException error;                            // exception, null if value
        //回调是否已经被完成
        boolean done;                                 // true when call is done
        ....
    看到这个Call回调类,也许你慢慢的会明白Hadoop RPC的一个基本原型了,这些Call当然是存在于某个连接中的,一个连接可能会发生多个回调,所以在Connection中维护了calls列表:
      private class Connection extends Thread {
        ....
        // currently active calls 当前活跃的回调,一个连接 可能会有很多个call回调
        private Hashtable<Integer, Call> calls = new Hashtable<Integer, Call>();
    作者在设计Call类的时候,比较聪明的考虑一种并发情况下的Call调用,所以为此设计了下面这个Call的子类,就是专门用于短时间内的瞬间Call调用:

      /** Call implementation used for parallel calls. */
      /** 继承自Call回调类,可以并行的使用,通过加了index下标做Call的区分 */
      private class ParallelCall extends Call {
    	//每个ParallelCall并行的回调就会有对应的结果类
        private ParallelResults results;
        //index作为Call的区分
        private int index;
        ....
    如果要查找值,就通过里面的ParallelCall查找,原理是根据index索引:

      /** Result collector for parallel calls. */
      private static class ParallelResults {
    	//并行结果类中拥有一组返回值,需要ParallelCall的index索引匹配
        private Writable[] values;
        //结果值的数量
        private int size;
        //values中已知的值的个数
        private int count;
    
        .....
    
        /** Collect a result. */
        public synchronized void callComplete(ParallelCall call) {
          //将call中的值赋给result中
          values[call.index] = call.value;            // store the value
          count++;                                    // count it
          //如果计数的值等到最终大小,通知caller
          if (count == size)                          // if all values are in
            notify();                                 // then notify waiting caller
        }
      }
    因为Call结构集是这些并发Call共有的,所以用的是static变量,都存在在了values数组中了,只有所有的并发Call都把值取出来了,才算回调成功,这个是个非常细小的辅助设计,这个在有些书籍上并没有多少提及。下面我们看看一般Call回调的流程,正如刚刚说的,最终客户端看到的形式就是,传入参数,获得结果,忽略内部一切逻辑,这是怎么做到的呢,答案在下面:

    在执行之前,你会先得到ConnectionId:

    public Writable call(Writable param, InetSocketAddress addr, 
                           Class<?> protocol, UserGroupInformation ticket,
                           int rpcTimeout)
                           throws InterruptedException, IOException {
        ConnectionId remoteId = ConnectionId.getConnectionId(addr, protocol,
            ticket, rpcTimeout, conf);
        return call(param, remoteId);
      }
    接着才是主流程:

    public Writable call(Writable param, ConnectionId remoteId)  
                           throws InterruptedException, IOException {
    	//根据参数构造一个Call回调
        Call call = new Call(param);
        //根据远程ID获取连接
        Connection connection = getConnection(remoteId, call);
        //发送参数
        connection.sendParam(call);                 // send the parameter
        boolean interrupted = false;
        synchronized (call) {
          //如果call.done为false,就是Call还没完成
          while (!call.done) {
            try {
              //等待远端程序的执行完毕
              call.wait();                           // wait for the result
            } catch (InterruptedException ie) {
              // save the fact that we were interrupted
              interrupted = true;
            }
          }
    
          //如果是异常中断,则终止当前线程
          if (interrupted) {
            // set the interrupt flag now that we are done waiting
            Thread.currentThread().interrupt();
          }
    
          //如果call回到出错,则返回call出错信息
          if (call.error != null) {
            if (call.error instanceof RemoteException) {
              call.error.fillInStackTrace();
              throw call.error;
            } else { // local exception
              // use the connection because it will reflect an ip change, unlike
              // the remoteId
              throw wrapException(connection.getRemoteAddress(), call.error);
            }
          } else {
        	//如果是正常情况下,返回回调处理后的值
            return call.value;
          }
        }
      }
    在这上面的操作步骤中,重点关注2个函数,获取连接操作,看看人家是如何保证连接的复用性的:

    private Connection getConnection(ConnectionId remoteId,
                                       Call call)
                                       throws IOException, InterruptedException {
        .....
        /* we could avoid this allocation for each RPC by having a  
         * connectionsId object and with set() method. We need to manage the
         * refs for keys in HashMap properly. For now its ok.
         */
        do {
          synchronized (connections) {
        	//从connection连接池中获取连接,可以保证相同的连接ID可以复用
            connection = connections.get(remoteId);
            if (connection == null) {
              connection = new Connection(remoteId);
              connections.put(remoteId, connection);
            }
          }
        } while (!connection.addCall(call));
    
    有点单例模式的味道哦,还有一个方法叫sendParam发送参数方法:

        public void sendParam(Call call) {
          if (shouldCloseConnection.get()) {
            return;
          }
    
          DataOutputBuffer d=null;
          try {
            synchronized (this.out) {
              if (LOG.isDebugEnabled())
                LOG.debug(getName() + " sending #" + call.id);
              
              //for serializing the
              //data to be written
              //将call回调中的参数写入到输出流中,传向服务端
              d = new DataOutputBuffer();
              d.writeInt(call.id);
              call.param.write(d);
              byte[] data = d.getData();
              int dataLength = d.getLength();
              out.writeInt(dataLength);      //first put the data length
              out.write(data, 0, dataLength);//write the data
              out.flush();
            }
            ....
    代码只发送了Call的id,和请求参数,并没有把所有的Call的内容都扔出去了,一定是为了减少数据量的传输,这里还把数据的长度写入了,这是为了方便服务端准确的读取到不定长的数据。这服务端中间的处理操作不是今天讨论的重点。Call的执行过程就是这样。那么Call是如何被调用的呢,这又要重新回到了Client客户端上去了,Client有一个run()函数,所有的操作都是始于此的;

        public void run() {
          if (LOG.isDebugEnabled())
            LOG.debug(getName() + ": starting, having connections " 
                + connections.size());
    
          //等待工作,等待请求调用
          while (waitForWork()) {//wait here for work - read or close connection
        	//调用完请求,则立即获取回复
            receiveResponse();
          }
          
          close();
          
          if (LOG.isDebugEnabled())
            LOG.debug(getName() + ": stopped, remaining connections "
                + connections.size());
        }
    操作很简单,程序一直跑着,有请求,处理请求,获取请求,没有请求,就死等

    private synchronized boolean waitForWork() {
          if (calls.isEmpty() && !shouldCloseConnection.get()  && running.get())  {
            long timeout = maxIdleTime-
                  (System.currentTimeMillis()-lastActivity.get());
            if (timeout>0) {
              try {
                wait(timeout);
              } catch (InterruptedException e) {}
            }
          }
          ....
    获取回复的操作如下:

    /* Receive a response.
         * Because only one receiver, so no synchronization on in.
         * 获取回复值
         */
        private void receiveResponse() {
          if (shouldCloseConnection.get()) {
            return;
          }
          //更新最近一次的call活动时间
          touch();
          
          try {
            int id = in.readInt();                    // try to read an id
    
            if (LOG.isDebugEnabled())
              LOG.debug(getName() + " got value #" + id);
    
            //从获取call中取得相应的call
            Call call = calls.get(id);
    
            //判断该结果状态
            int state = in.readInt();     // read call status
            if (state == Status.SUCCESS.state) {
              Writable value = ReflectionUtils.newInstance(valueClass, conf);
              value.readFields(in);                 // read value
              call.setValue(value);
              calls.remove(id);
            } else if (state == Status.ERROR.state) {
              call.setException(new RemoteException(WritableUtils.readString(in),
                                                    WritableUtils.readString(in)));
              calls.remove(id);
            } else if (state == Status.FATAL.state) {
              // Close the connection
              markClosed(new RemoteException(WritableUtils.readString(in), 
                                             WritableUtils.readString(in)));
            }
            .....
          } catch (IOException e) {
            markClosed(e);
          }
        }
    从之前维护的Call列表中取出,做判断。Client本身的执行流程比较的简单:




    Hadoop RPC客户端的通信模块的部分大致就是我上面的这个流程,中间其实还忽略了很多的细节,大家学习的时候,针对源码会有助于更好的理解,Hadoop RPC的服务端的实现更加复杂,所以建议采用分模块的学习或许会更好一点。

  • 相关阅读:
    推荐几款很棒的 JavaScript 表单美化和验证插件
    开源来自百度商业前端数据可视化团队的超漂亮动态图表--ECharts
    两种高性能 I/O 设计模式 Reactor 和 Proactor
    基本排序算法:Python实现
    局域网聊天软件(winsocket)
    MFC控件(8):command button与syslink control
    Linux python2.4升级到2.7
    调色板QPalette类用法详解(附实例、源码)(很清楚:窗口背景色 前景色 按钮的颜色 按钮文本的颜色 )
    在IT公司,project manager 基本上和秘书,助理什么的差不多
    Qt之OpenSSL(有pro文件的路径格式,以及对libeay32和ssleay32的引用)
  • 原文地址:https://www.cnblogs.com/bianqi/p/12184129.html
Copyright © 2020-2023  润新知