• hdu 4602 Partition (概率方法)


    Partition

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2472    Accepted Submission(s): 978


    Problem Description
    Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
      4=1+1+1+1
      4=1+1+2
      4=1+2+1
      4=2+1+1
      4=1+3
      4=2+2
      4=3+1
      4=4
    totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
    Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
     

    Input
    The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
    Each test case contains two integers n and k(1≤n,k≤109).
     

    Output
    Output the required answer modulo 109+7 for each test case, one per line.
     

    Sample Input
    2 4 2 5 5
     

    Sample Output
    5 1


    对于1 <= k < n,我们能够等效为n个点排成一列,并取出当中的连续k个,这连续的看K个两端断开;

    1、若取得是这K个点包含端点(我们仅仅考虑一个端点的情况),还剩下(n-k-1)个间隔,

    每一个间隔有断开和闭合两种状态,故有2^(n-k-1),最后乘以2;

    2、若取得是这K个点不包含端点,这连续的K个点有(n-k-1)种取法,还剩下(n-k-2)个间隔,

    故有2^(n-k-2)*(n-k-1);

    总计2 ∗ 2^(n – k − 1) + 2^(n – k − 2) ∗ (n – k − 1) = (n – k + 3) * 2^(n – k − 2)。 


    #include"stdio.h"
    #include"string.h"
    #include"queue"
    #include"vector"
    #include"algorithm"
    using namespace std;
    #define LL __int64
    const int mod=1000000007;
    int main()
    {
        int T,i,n,k;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&k);
            if(n<k)
                printf("0
    ");
            else if(n==k)
                printf("1
    ");
            else
            {
                LL d=n-k,s1,t;
                if(d==1) printf("2
    ");
                else
                {
                    s1=d+3;
                    d-=2;
                    LL aa=2,tmp=1;
                    while(d)
                    {
                        if(d&1)
                            tmp*=aa;
                        d/=2;
                        aa=(aa*aa)%mod;
                        tmp%=mod;
                    }
                    printf("%I64d
    ",(tmp*s1)%mod);
                }
            }
    
        }
        return 0;
    }


  • 相关阅读:
    40. 组合总和 II(回溯法)
    39. 组合总和(回溯法)
    1640. 能否连接形成数组
    890. 查找和替换模式
    386. 字典序排数
    20. 有效的括号
    496. 下一个更大元素 I
    115. 不同的子序列
    59. 螺旋矩阵 II
    HTML基本结构,标签
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4065832.html
Copyright © 2020-2023  润新知