• 1144.Freckles


    题目描述:

        In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through. 
        Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle. 

    输入:

        The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

    输出:

        Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

    样例输入:
    3
    1.0 1.0
    2.0 2.0
    2.0 4.0
    样例输出:
    3.41
    #include<stdio.h>
    #include<math.h>
    #include<algorithm>
    using namespace std;
    #define N 101
    int tree[N];
    int findroot(int x){
        if(tree[x]==-1) return x;
        else {
            int temp=findroot(tree[x]);
            tree[x]=temp;
            return temp;
        }
    }
    
    struct edge{
        int a,b;
        double cost;
        bool operator < (const edge &A) const{
           return cost<A.cost;
        }
    }edge[6000];
    
    struct point{
        double x,y;
        double getdistance(point A){
            double temp=(x-A.x)*(x-A.x)+(y-A.y)*(y-A.y);
            return sqrt(temp);
        }
    }list[101];
    
    int main(){
        int n;
        while(scanf("%d",&n)!=EOF){
            for(int i=1;i<=n;i++){
                scanf("%lf%lf",&list[i].x,&list[i].y);
            }
            int size=0;
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    edge[size].a=i;
                    edge[size].b=j;
                    edge[size].cost=list[i].getdistance(list[j]);
                    size++;
                }
            }
            sort(edge,edge+size);
            for(int i=1;i<=n;i++){
                tree[i]=-1;
            }
            double ans=0;
            for(int i=0;i<size;i++){
                int a=findroot(edge[i].a);
                int b=findroot(edge[i].b);
                if(a!=b){
                    tree[a]=b;
                    ans+=edge[i].cost;
                }
            }
            printf("%.2lf
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    oracle基本语句
    SVM入门(六)线性分类器的求解——问题的转化,直观角度
    深入浅出KMeans算法
    SVM入门(三)线性分类器Part 2
    SVM入门(一)SVM的八股简介
    Hadoop源代码分析(五)
    用HTML5 Audio API开发游戏音乐
    Hadoop源代码分析(六)
    SVM入门(四)线性分类器的求解——问题的描述Part1
    SVM入门(二)线性分类器Part 1
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/9735105.html
Copyright © 2020-2023  润新知