导数公式
基本积分表:
三角函数的有理式积分:
一些初等函数:
两个重要极限:
三角函数公式:
·诱导公式:
函数 角A |
sin |
cos |
tg |
ctg |
-α |
-sinα |
cosα |
-tgα |
-ctgα |
90°-α |
cosα |
sinα |
ctgα |
tgα |
90°+α |
cosα |
-sinα |
-ctgα |
-tgα |
180°-α |
sinα |
-cosα |
-tgα |
-ctgα |
180°+α |
-sinα |
-cosα |
tgα |
ctgα |
270°-α |
-cosα |
-sinα |
ctgα |
tgα |
270°+α |
-cosα |
sinα |
-ctgα |
-tgα |
360°-α |
-sinα |
cosα |
-tgα |
-ctgα |
360°+α |
sinα |
cosα |
tgα |
ctgα |
和差角公式:
和差化积公式:
·倍角公式:
·半角公式:
·正弦定理:
·余弦定理:
·反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解 |
|
两个不相等实根 |
|
两个相等实根 |
|
一对共轭复根 |
二阶常系数非齐次线性微分方程