• P5110 【块速递推】


    太菜了,不会生成函数,于是用特征方程来写的这道题

    首先我们知道,形如(a_n=A*a_{n-1}+B*a_{n-2})的特征方程为(x^2=A*x+B)

    于是此题的递推式就是:(x^2=233x+666),即:(x^2-233x-666=0)

    用求根公式解得:(x_1=dfrac{233+sqrt{56953}}{2}, x_2=dfrac{233-sqrt{56953}}{2})

    由于(188305837≡sqrt{56953}(mod 1e9+7))

    所以变成:$x_1 = (94153035)‬$, (x_2=905847205)

    跟据特征方程的结论:(a_n=αx_1^n+β*x_2^n)

    因为(a_0=0, a_1=1),所以有:

    (α+β=0)

    (94153035*α+905847205*β=1)

    解得:(α=dfrac{1}{188305837}=233230706, β=-dfrac{1}{188305837}=-233230706)

    所以(a_n=233230706*94153035^n-233230706*905847205^n)

    由于询问较多,所以我们要用(O(1))光速幂求解

    (Code:)

    #include<bits/stdc++.h>
    using namespace std;
    #define il inline
    #define re register
    il int read() {
        re int x = 0, f = 1; re char c = getchar();
        while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
        return x * f;
    }
    #define rep(i, s, t) for(re int i = s; i <= t; ++ i)
    #define maxn 300
    const int mod = 1000000007;
    const int x1 = 94153035, x2 = 905847205, a = 233230706;
    int n, m, ans;
    int f1[65540], f2[65540], f3[65540], f4[65540];
    int g1[65540], g2[65540], g3[65540], g4[65540];
    unsigned long long SA,SB,SC;
    void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
    unsigned long long Rand() {
        SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
        unsigned long long t=SA;
        SA=SB,SB=SC,SC^=t^SA;return SC;
    }
    il int mul(int a, int b) {
        return 1ll * a * b % mod;
    }
    il int qpow1(int x) {
        return mul(f1[x & 65535], f2[x >> 16]);
    }
    il int qpow2(int x) {
        return mul(g1[x & 65535], g2[x >> 16]);
    }
    int main() {
        f1[0] = g1[0] = 1;
        rep(i, 1, 65536) f1[i] = mul(f1[i - 1], x1), g1[i] = mul(g1[i - 1], x2);
    	f2[0] = g2[0] = 1, f2[1] = f1[65536], g2[1] = g1[65536];
    	rep(i, 2, 65536) f2[i] = mul(f2[i - 1], f2[1]), g2[i] = mul(g2[i - 1], g2[1]);
    	int T = read(); init();
        while(T --) {
            n = (Rand()) % (mod - 1);
            ans ^= 1ll * a * (qpow1(n) - qpow2(n) + mod) % mod;
        }
        printf("%d", ans);
    	return 0;
    }
    
  • 相关阅读:
    C++ 简单实现shared_ptr
    C++设计模式 工厂方法(Factory Method)
    C++简单实现unique_ptr
    C++ atomic
    C++设计模式 单例模式(Singleton)
    stream 分组(group)和map的值映射mapping变型写法
    springboot集成mbatisplus+shardingjdbc+水平分表
    springboot集成mbatisplus+shardingjdbc+水平分库
    基准测试JMH的demo
    流快速收集指定keyvalue的map集合
  • 原文地址:https://www.cnblogs.com/bcoier/p/11774639.html
Copyright © 2020-2023  润新知