• 【原创】股票常用指标计算


    计算MA和EMA通用方法

      def getAverageArray(datas : Array[Double], period : Int, maType : MaType = MaType.Ma, weight : Double = 2.0) : ArrayBuffer[Double] = {
        val averageArray = ArrayBuffer[Double]()
        for (i <- 0 until period) averageArray += 0.0
        var average = 0.0
        for (i <- period until datas.size) {
          if (average == 0.0) average = datas.slice(0, period).sum / period
          maType match {
            case MaType.Ma => average = (average * period - datas.apply(i - period) + datas.apply(i)) / period
            case MaType.Ema => {val percent = weight / (period + weight - 1);average = datas.apply(i) * percent + average * (1 - percent)}
            case _ => throw new RuntimeException("unsupport ma type : " + maType)
          }
          averageArray += average
        }
        averageArray
      }

    计算MA

      def calculateMa(wrapperList: Array[StockInfoWrapper], period: Int, maType: MaExporter.MaType, weight: Double, getValue : (StockInfo => java.lang.Double), getAverageMap : (StockInfoWrapper => util.Map[Integer, java.lang.Double])) = {
        val averageArray = this.getAverageArray(wrapperList.map(wrapper => getValue(wrapper.getStockInfo)).map(_.toDouble), period, maType)
        for (i <- 0 until wrapperList.length) getAverageMap(wrapperList.apply(i)).put(period, averageArray.apply(i))
      }

    计算BOLL

      def calculateBoll(wrapperList: Array[StockInfoWrapper], period: Int, getValue : (StockInfo => java.lang.Double), getAverageMap : (StockInfoWrapper => util.Map[Integer, java.lang.Double])) = {
        var md = 0.0
        val averageArray = this.getAverageArray(wrapperList.map(wrapper => getValue(wrapper.getStockInfo)).map(_.toDouble), period, MaType.Ma)
        for (i <- 2 * period until wrapperList.size) {
          if (md == 0.0) {
            for (j <- period until 2 * period) md += Math.pow(Math.abs(getValue(wrapperList.apply(j).getStockInfo) - averageArray.apply(j)), 2)
            md = Math.pow(md / period, 0.5)
          }
          if (md > 0) {
            getAverageMap(wrapperList.apply(i)).put(10000, averageArray.apply(i) + avergeBollDayCount.apply(1) * md)
            getAverageMap(wrapperList.apply(i)).put(10001, averageArray.apply(i) - avergeBollDayCount.apply(1) * md)
            md = Math.pow((Math.pow(md, 2) * period - Math.pow(Math.abs(getValue(wrapperList.apply(i - period).getStockInfo) - averageArray.apply(i - period)), 2) + Math.pow(Math.abs(getValue(wrapperList.apply(i).getStockInfo) - averageArray.apply(i)), 2)) / period, 0.5)
          }
        }
      }

    计算MACD

      def calculateMacd(wrapperList: Array[StockInfoWrapper], period1: Int, period2 : Int, period3 : Int, weight: Double, getValue : (StockInfo => java.lang.Double), getAverageMap : (StockInfoWrapper => util.Map[Integer, java.lang.Double])) = {
        val average1Array = this.getAverageArray(wrapperList.map(wrapper => getValue(wrapper.getStockInfo)).map(_.toDouble), period1, MaType.Ema, this.weight)
        val average2Array = this.getAverageArray(wrapperList.map(wrapper => getValue(wrapper.getStockInfo)).map(_.toDouble), period2, MaType.Ema, this.weight)
        val diffArray = ArrayBuffer[Double]()
        for (i <- 0 until average1Array.length) diffArray += average1Array.apply(i) - average2Array.apply(i)
        val averageDiffArray = this.getAverageArray(diffArray.toArray, period3, MaType.Ema, this.weight)
        for (i <- 1 until wrapperList.length) {
          getAverageMap(wrapperList.apply(i)).put(0, (diffArray.apply(i) - (averageDiffArray.apply(i - 1) * 0.8 + diffArray.apply(i) * 0.2)) * 2)
          getAverageMap(wrapperList.apply(i)).put(1, diffArray.apply(i))
          getAverageMap(wrapperList.apply(i)).put(2, averageDiffArray.apply(i))
        }
      }

    调用

    class StockInfo(openingprice : Double, highestprice : Double, lowestprice : Double, closingprice : Double, tradevolumn : Double, transactionvalue : Double){}
    class StockInfoWrapper(stock : StockInfo) {
      val averagePriceMap = Map[Int, Double]()
      val averageVolumnMap = Map[Int, Double]()
      val averageMacdMap = Map[Int, Double]()
    }
    
      val averagePriceDayCountList = List(18, 28, 50, 250)
      val averageVolumnDayCountList = List(5)
      val avergeBollDayCount = List(18, 2)
      val averageMACDDayCountList = List(12, 26, 9)
      val weight = 2.0
    
        this.averagePriceDayCountList.foreach(averagePriceDayCount => this.calculateMa(wrapperList, averagePriceDayCount, MaType.Ma, this.weight, _.getClosingprice, _.getAveragePriceMap))
        this.averageVolumnDayCountList.foreach(averageVolumnDayCount => this.calculateMa(wrapperList, averageVolumnDayCount, MaType.Ma, this.weight, _.getTradevolumn, _.getAverageVolumnMap))
        this.calculateBoll(wrapperList, avergeBollDayCount.apply(0), _.getClosingprice, _.getAveragePriceMap)
        this.calculateMacd(wrapperList, averageMACDDayCountList.apply(0), averageMACDDayCountList.apply(1), averageMACDDayCountList.apply(2), this.weight, _.getClosingprice, _.getAverageMacdMap)
  • 相关阅读:
    算法导论 第二部分——排序和顺序统计量
    算法导论——第一部分——基础知识
    liunx中的进程与线程
    vector中pair的排序方法
    sql 入门经典(第五版) Ryan Stephens 学习笔记 第五部分: 性能调整
    sql 入门经典(第五版) Ryan Stephens 学习笔记  第四部分:建立复杂的数据库查询/
    Object C学习笔记1-基本数据类型说明
    Objective-C(生命周期)
    从 React 的组件更新谈 Immutable 的应用
    React性能优化总结(转)
  • 原文地址:https://www.cnblogs.com/barneywill/p/10208915.html
Copyright © 2020-2023  润新知