• MySQL前缀索引和索引选择性


    有时候需要索引很长的字符列,这会让索引变得大且慢。通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率。但这样也会降低索引的选择性。索引的选择性是指不重复的索引值(也称为基数,cardinality)和数据表的记录总数的比值,范围从1/#T到1之间。索引的选择性越高则查询效率越高,因为选择性高的索引可以让MySQL在查找时过滤掉更多的行。唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

    一般情况下某个前缀的选择性也是足够高的,足以满足查询性能。对于BLOB,TEXT,或者很长的VARCHAR类型的列,必须使用前缀索引,因为MySQL不允许索引这些列的完整长度。

    诀窍在于要选择足够长的前缀以保证较高的选择性,同时又不能太长(以便节约空间)。前缀应该足够长,以使得前缀索引的选择性接近于索引的整个列。换句话说,前缀的”基数“应该接近于完整的列的”基数“。

    为了决定前缀的合适长度,需要找到最常见的值的列表,然后和最常见的前缀列表进行比较。下面的示例是mysql官方提供的示例数据库

    下载地址如下:

    http://downloads.mysql.com/docs/sakila-db.zip

    在示例数据库sakila中并没有合适的例子,所以从表city中生成一个示例表,这样就有足够数据进行演示:

    mysql> select database();                                                           
    +------------+
    | database() |
    +------------+
    | sakila     |
    +------------+
    1 row in set (0.00 sec)
    
    mysql> create table city_demo (city varchar(50) not null);                          
    Query OK, 0 rows affected (0.02 sec)
    
    mysql> insert into city_demo (city) select city from city;                          
    Query OK, 600 rows affected (0.08 sec)
    Records: 600  Duplicates: 0  Warnings: 0
    
    mysql> insert into city_demo (city) select city from city_demo;
    Query OK, 600 rows affected (0.07 sec)
    Records: 600  Duplicates: 0  Warnings: 0
    
    mysql> update city_demo set city = ( select city from city order by rand() limit 1);
    Query OK, 1199 rows affected (0.95 sec)
    Rows matched: 1200  Changed: 1199  Warnings: 0
    
    mysql> 

    因为这里使用了rand()函数,所以你的数据会与我的不同,当然那不影响聪明的你。

    首先找到最常见的城市列表:

    mysql> select count(*) as cnt, city from city_demo group by city order by cnt desc limit 10;               
    +-----+--------------+
    | cnt | city         |
    +-----+--------------+
    |   8 | Garden Grove |
    |   7 | Escobar      |
    |   7 | Emeishan     |
    |   6 | Amroha       |
    |   6 | Tegal        |
    |   6 | Lancaster    |
    |   6 | Jelets       |
    |   6 | Ambattur     |
    |   6 | Yingkou      |
    |   6 | Monclova     |
    +-----+--------------+
    rows in set (0.01 sec)
    
    mysql>

    注意到查询结果,上面每个值都出现了6-8次。现在查找到频繁出现的城市前缀。先从3个前缀字母开始,然后4个,5个,6个:

    mysql> select count(*) as cnt,left(city,3) as pref from city_demo group by pref order by cnt desc limit 10;
    +-----+------+
    | cnt | pref |
    +-----+------+
    |  25 | San  |
    |  15 | Cha  |
    |  12 | Bat  |
    |  12 | Tan  |
    |  11 | al-  |
    |  11 | Gar  |
    |  11 | Yin  |
    |  10 | Kan  |
    |  10 | Sou  |
    |  10 | Bra  |
    +-----+------+
    10 rows in set (0.00 sec)
    
    mysql> select count(*) as cnt,left(city,4) as pref from city_demo group by pref order by cnt desc limit 10; 
    +-----+------+
    | cnt | pref |
    +-----+------+
    |  12 | San  |
    |  10 | Sout |
    |   8 | Chan |
    |   8 | Sant |
    |   8 | Gard |
    |   7 | Emei |
    |   7 | Esco |
    |   6 | Ying |
    |   6 | Amro |
    |   6 | Lanc |
    +-----+------+
    10 rows in set (0.01 sec)
    
    mysql> select count(*) as cnt,left(city,5) as pref from city_demo group by pref order by cnt desc limit 10; 
    +-----+-------+
    | cnt | pref  |
    +-----+-------+
    |  10 | South |
    |   8 | Garde |
    |   7 | Emeis |
    |   7 | Escob |
    |   6 | Amroh |
    |   6 | Yingk |
    |   6 | Moncl |
    |   6 | Lanca |
    |   6 | Jelet |
    |   6 | Tegal |
    +-----+-------+
    10 rows in set (0.01 sec)
    mysql> select count(*) as cnt,left(city,6) as pref from city_demo group by pref order by cnt desc limit 10; 
    +-----+--------+
    | cnt | pref   |
    +-----+--------+
    |   8 | Garden |
    |   7 | Emeish |
    |   7 | Escoba |
    |   6 | Amroha |
    |   6 | Yingko |
    |   6 | Lancas |
    |   6 | Jelets |
    |   6 | Tegal  |
    |   6 | Monclo |
    |   6 | Ambatt |
    +-----+--------+
    rows in set (0.00 sec)
    
    mysql>

    通过上面改变不同前缀长度发现,当前缀长度为6时,这个前缀的选择性就接近完整列的选择性了。甚至是一样的。

    当然还有另外更方便的方法,那就是计算完整列的选择性,并使其前缀的选择性接近于完整列的选择性。下面显示如何计算完整列的选择性:

    mysql> select count(distinct city) / count(*) from city_demo;
    +---------------------------------+
    | count(distinct city) / count(*) |
    +---------------------------------+
    |                          0.4283 |
    +---------------------------------+
    row in set (0.05 sec)
    
    mysql>

    可以在一个查询中针对不同前缀长度的选择性进行计算,这对于大表非常有用,下面给出如何在同一个查询中计算不同前缀长度的选择性:

    mysql> select count(distinct left(city,3))/count(*) as sel3,
        -> count(distinct left(city,4))/count(*) as sel4,
        -> count(distinct left(city,5))/count(*) as sel5, 
        -> count(distinct left(city,6))/count(*) as sel6 
        -> from city_demo;
    +--------+--------+--------+--------+
    | sel3   | sel4   | sel5   | sel6   |
    +--------+--------+--------+--------+
    | 0.3367 | 0.4075 | 0.4208 | 0.4267 |
    +--------+--------+--------+--------+
    1 row in set (0.01 sec)
    
    mysql> 

    可以看见当索引前缀为6时的基数是0.4267,已经接近完整列选择性0.4283。

    在上面的示例中,已经找到了合适的前缀长度,下面创建前缀索引:

    mysql> alter table city_demo add key (city(6));
    Query OK, 0 rows affected (0.19 sec)
    Records: 0  Duplicates: 0  Warnings: 0
    mysql> explain select * from city_demo where city like 'Jinch%';
    +----+-------------+-----------+-------+---------------+------+---------+------+------+-------------+
    | id | select_type | table     | type  | possible_keys | key  | key_len | ref  | rows | Extra       |
    +----+-------------+-----------+-------+---------------+------+---------+------+------+-------------+
    |  1 | SIMPLE      | city_demo | range | city          | city | 20      | NULL |    2 | Using where |
    +----+-------------+-----------+-------+---------------+------+---------+------+------+-------------+
    1 row in set (0.00 sec)

    可以看见正确使用刚创建的索引。

    前缀索引是一种能使索引更小,更快的有效办法,但另一方面也有其缺点:

    mysql无法使用其前缀索引做ORDER BY和GROUP BY,也无法使用前缀索引做覆盖扫描。

    转自:  http://www.cnblogs.com/gomysql

  • 相关阅读:
    ME05 黑匣子思维
    F06 《生活中的投资学》摘要(完)
    ME03 关于运气要知道的几个真相
    ME02 做一个合格的父母To be good enough parent
    ME02 认知之2017罗胖跨年演讲
    F03 金融学第三定律 风险共担
    F05 敏锐的生活,让跟多公司给你免单
    ML04 Accord 调用实现机器算法的套路
    D02 TED Elon Mulsk The future we're building — and boring
    ML03 利用Accord 进行机器学习的第一个小例子
  • 原文地址:https://www.cnblogs.com/balfish/p/9003794.html
Copyright © 2020-2023  润新知