• LeetCode(460):手写LFU算法


    题目描述

    实现思路

    1、大致分析

    依据题目,可以列举出几个显而易见的事实:

    • 调用get方法, 返回该key对应的val
    • 调用get或者put方法访问某个key,该key对应的freq加一
    • 如果在容量满了以后进行插入,则需要将freq最小的key删除,如果最小的freq对应多个key,则删除其中最旧(最早put进来)的那个

    如果我们希望在O(1)的时间复杂度内解决这些需求,就要逐个击破:

    • 使用一个Map存储key到val的映射,命名为keyToVal
    • 使用一个Map存储key到freq的映射,命名为keyToFreq

    为了实现“最不经常使用”的功能,我们需要:

    • 使用一个Map存储freq到key的映射,命名为freqToKeys
    • 用变量minFreq来记录当前最小的freq
    • 可能有多个key具有相同的freq,所以每个freq应该对应一个key的列表
    • 当容量已满时,我们需要淘汰最不经常使用最早被插入的key,这就要求freq对应的key列表要有时序
    • 因此,每个freq对应的key用双向链表来维护:要淘汰key时,删除链表的第一个节点;要更新key时,在链表尾部插入新节点

    至此,我们就可以写出LFUcache的基本数据结构(初始化):

    var LFUCache = function(capacity) {
        this.keyToVal = new Map()
        this.keyToFreq = new Map()
        this.freqToKeys = new Map()
        this.capacity = capacity
        this.minFreq = 0
    };
    

    定义节点类和双向链表类:

    class Node {
        constructor(key){
            this.key = key
        }
    }
    
    class HashedList {
        constructor(){
            this.head = new Node(0)
            this.head.next = this.tail
            this.tail = new Node(0)
            this.tail.prev = this.head
            this.size = 0
        }
    }
    

    2.1、get方法

    get方法的逻辑很简单:

    • 在keyToVal中查找,找不到则返回-1,找到则返回val
    • 增加key对应的freq
    LFUCache.prototype.get = function(key) {
        if(!this.keyToVal.has(key)){
            return -1
        }
        this.increaseFreq(key)
        return this.keyToVal.get(key)
    };
    

    2.2、 put方法

    put方法的逻辑稍微有点复杂:

    • 在keyToVal中查找key是否存在:若存在,则修改key对应的val,并增加key对应的freq
    • 若不存在:判断容量是否已满
    • 若容量已满,则淘汰一个freq最小的key
    • 更新3个哈希表
    LFUCache.prototype.put = function(key, value) {
        if(this.capacity <= 0){
            return
        }
    
        // key已存在
        if(this.keyToVal.has(key)){
            this.keyToVal.set(key,value)
            this.increaseFreq(key)
            return
        }
    
        // key不存在,且容量已满
        if(this.capacity <= this.keyToVal.size){
            this.removeMinFreqKey()
        }
    
        // 插入key和value,对应的freq为1
        // 插入KV表
        this.keyToVal.set(key,value)
        // 插入KF表
        this.keyToFreq.set(key,1)
        // 插入FK表
        if(!this.freqToKeys.has(1)){
            let list = new HashedList()
            this.freqToKeys.set(1,list)
        }
        this.freqToKeys.get(1).addLast(key)
        this.minFreq = 1
    };
    
    

    要注意的是:在更新freqToKeys时,要先判断是否有freq=1的key链表

    如果没有,要先创建一个空的双向链表

    然后通过addLast方法,将新的key节点插入到链表尾部

    addLast(key){
        let x = new Node(key)
        x.prev = this.tail.prev
        x.next = this.tail
        this.tail.prev.next = x
        this.tail.prev = x
        this.size++
    }
    

    3.1、removeMinFreqKey方法

    首先通过freqToKeys 找到minFreq对应的链表 记为list

    然后删除list的第一个节点

    为HashedList编写一个removeFirst方法,在删除第一个节点的同时,返回其key值

    removeFirst(){
        var first = this.head.next
        this.head.next = first.next
        first.next.prev = this.head
        this.size--
        return first.key
    }
    

    如果删除后,list变为空,则在freqToKeys中删除这个freq对应的映射

    最后更新另外2个哈希表

    LFUCache.prototype.removeMinFreqKey = function(){
        var list = this.freqToKeys.get(this.minFreq)
        var deleteKey = list.removeFirst()
        if(list.size === 0){
            this.freqToKeys.delete(this.minFreq)
        }
        this.keyToVal.delete(deleteKey)
        this.keyToFreq.delete(deleteKey)
    }
    

    为什么在删除minFreq对应的映射时,不需要更新minFreq呢?

    因为removeMinFreqKey只在put方法且新插入的key不存在的时候发生,在此之后,minFreq一定为1

    3.2、increaseFreq方法

    首先 通过keyToFreq找到key对应的freq 记为freq

    然后 更新keyToFreq

    然后 更新 freqToKeys:

    • 将key从freq对应的链表中删除
    • 将key加入freq+1对应的链表中

    同样地,要处理freq链表为空 以及 freq+1链表不存在的这2种特殊情况

    LFUCache.prototype.increaseFreq = function(key) {
        var freq = this.keyToFreq.get(key)
    
        this.keyToFreq.set(key,freq+1)
        
        this.freqToKeys.get(freq).remove(key)
        
        if(!this.freqToKeys.has(freq+1)){
            let list = new HashedList()
            this.freqToKeys.set(freq+1,list)
        }
        this.freqToKeys.get(freq+1).addLast(key)
        
        if(this.freqToKeys.get(freq).size === 0){
            this.freqToKeys.delete(freq)
            if(freq === this.minFreq){
                this.minFreq++
            }
        }
    }
    

    最后,为HashedList类编写一个remove方法,从链表中删除指定key的节点

    remove(key){
        var p = this.head.next
        while(p != this.tail){
            if(p.key === key){
            	break
            }
            p = p.next
        }
        
        p.prev.next = p.next
        p.next.prev = p.prev
        this.size--
    }
    

    代码实现(JavaScript)

    附上完整的代码:

    class Node {
        constructor(key){
            this.key = key
        }
    }
    
    class HashedList {
        constructor(){
            this.head = new Node(0)
            this.head.next = this.tail
            this.tail = new Node(0)
            this.tail.prev = this.head
            this.size = 0
        }
    
        addLast(key){
            let x = new Node(key)
            x.prev = this.tail.prev
            x.next = this.tail
            this.tail.prev.next = x
            this.tail.prev = x
            this.size++
        }
    
        remove(key){
            var p = this.head.next
            while(p != this.tail){
                if(p.key === key){
                    break
                }
                p = p.next
            }
            
            p.prev.next = p.next
            p.next.prev = p.prev
            this.size--
        }
    
        removeFirst(){
            var first = this.head.next
            this.head.next = first.next
            first.next.prev = this.head
            this.size--
            return first.key
        }
    }
    
    var LFUCache = function(capacity) {
        this.keyToVal = new Map()
        this.keyToFreq = new Map()
        this.freqToKeys = new Map()
        this.capacity = capacity
        this.minFreq = 0
    };
    
    LFUCache.prototype.removeMinFreqKey = function(){
        var list = this.freqToKeys.get(this.minFreq)
        var deleteKey = list.removeFirst()
        if(list.size === 0){
            this.freqToKeys.delete(this.minFreq)
        }
        this.keyToVal.delete(deleteKey)
        this.keyToFreq.delete(deleteKey)
    }
    
    LFUCache.prototype.increaseFreq = function(key) {
        var freq = this.keyToFreq.get(key)
    
        this.keyToFreq.set(key,freq+1)
        
        this.freqToKeys.get(freq).remove(key)
        if(!this.freqToKeys.has(freq+1)){
            let list = new HashedList()
            this.freqToKeys.set(freq+1,list)
        }
        this.freqToKeys.get(freq+1).addLast(key)
        
        if(this.freqToKeys.get(freq).size === 0){
            this.freqToKeys.delete(freq)
            if(freq === this.minFreq){
                this.minFreq++
            }
        }
    }
    
    LFUCache.prototype.get = function(key) {
        if(!this.keyToVal.has(key)){
            return -1
        }
        this.increaseFreq(key)
        return this.keyToVal.get(key)
    };
    
    LFUCache.prototype.put = function(key, value) {
        if(this.capacity <= 0){
            return
        }
    
        if(this.keyToVal.has(key)){
            this.keyToVal.set(key,value)
            this.increaseFreq(key)
            return
        }
    
        if(this.capacity <= this.keyToVal.size){
            this.removeMinFreqKey()
        }
    
        this.keyToVal.set(key,value)
        
        this.keyToFreq.set(key,1)
        
        if(!this.freqToKeys.has(1)){
            let list = new HashedList()
            this.freqToKeys.set(1,list)
        }
        this.freqToKeys.get(1).addLast(key)
        this.minFreq = 1
    };
    
  • 相关阅读:
    Linux五种IO模型
    怎样理解阻塞非阻塞与同步异步的区别?
    .NET 框架 (转载)
    数组 反转
    排序 归并排序&逆序对
    快速寻找满足条件的2个数
    数组 寻找最大的第k个数
    字符串 删除字符串开始以及末尾的空白符,并把数组中间的多个空格(如果有)符转换为1个
    排序 快速排序
    java8常用api
  • 原文地址:https://www.cnblogs.com/baebae996/p/14238303.html
Copyright © 2020-2023  润新知