• CodeForces


    Description

    给一个长度为 (n(nle35000)) 的序列,值域是 ([1,n]) ,将它分成 (k(kle min(n,50))) 段,求最大得分。定义每段的得分为这段的不同数个数。

    Solution

    (dp[i][j]​) 表示前 (i​) 个数分成 (j​) 段的最大得分, (num[i][j]​)([i,j]​) 中不同数个数。显然有 (dp[i][j] = max{dp[t][j-1]+num[t+1][i]}​) 。每当我们加入一个数 (a[i]​) ,则只有 (num[pre[i]+1][i]​)(num[i][i]​) 会被加 (1​) 。于是用线段树维护 (dp[j][t]+cnt[j + 1][t]​) 即可。每次重新建树。

    #include<bits/stdc++.h>
    using namespace std;
    
    template <class T> inline void read(T &x) {
    	x = 0; static char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar());
    	for (; ch >= '0' && ch <= '9'; ch = getchar()) (x *= 10) += ch - '0';
    }
    
    #define N 35001
    #define rep(i, a, b) for (int i = a; i <= b; i++)
    #define ll long long
    
    int n, K, a[N], pos[N], pre[N], dp[N], Max[N << 2], tag[N << 2];
    
    #define ls rt << 1
    #define rs ls | 1
    #define mid (l + r >> 1)
    #define pushUp Max[rt] = max(Max[ls], Max[rs])
    void build(int rt, int l, int r) {
    	tag[rt] = 0;
    	if (l == r) { Max[rt] = dp[l]; return; }
    	build(ls, l, mid), build(rs, mid + 1, r);
    	pushUp;
    }
    
    inline void pushDown(int rt) {
    	int& t = tag[rt];
    	if (t) Max[ls] += t, Max[rs] += t, tag[ls] += t, tag[rs] += t, t = 0;
    }
    
    void update(int rt, int l, int r, int L, int R) {
    	if (L <= l && r <= R) { Max[rt]++, tag[rt]++; return; }
    	pushDown(rt);
    	if (L <= mid) update(ls, l, mid, L, R);
    	if (R > mid) update(rs, mid + 1, r, L, R);
    	pushUp;
    }
    
    int query(int rt, int l, int r, int L, int R) {
    	if (L <= l && r <= R) return Max[rt];
    	pushDown(rt); int ans = 0;
    	if (L <= mid) ans = max(ans, query(ls, l, mid, L, R));
    	if (R > mid) ans = max(ans, query(rs, mid + 1, r, L, R));
    	return ans;
    }
    
    int main() {
    	read(n), read(K);
    	rep(i, 1, n) read(a[i]), pre[i] = pos[a[i]], pos[a[i]] = i;
    	rep(j, 1, K) {
    		build(1, 0, n);
    		rep(i, 1, n) update(1, 0, n, pre[i], i - 1), dp[i] = query(1, 0, n, 0, i - 1);
    	}
    	printf("%d", dp[n]);
    	return 0;
    }
    
  • 相关阅读:
    HDU 5775 Bubble Sort
    HDU 5763 Another Meaning
    HDU 5773 The All-purpose Zero
    HDU 5768 Lucky7
    HDU 5769 Substring
    SPOJ 705 New Distinct Substrings
    POJ 3261 Milk Patterns
    HDU 1521 排列组合 指数型母函数
    HDU 1023 Traning Problem (2) 高精度卡特兰数
    HDU 2082 母函数模板题
  • 原文地址:https://www.cnblogs.com/aziint/p/9167894.html
Copyright © 2020-2023  润新知