• HDU 1023 Traning Problem (2) 高精度卡特兰数


    Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway. 
     

    Input

    The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file. 
     

    Output

    For each test case, you should output how many ways that all the trains can get out of the railway. 
     

    Sample Input

    1 2 3 10
     

    Sample Output

    1 2 5 16796

    Hint

     The result will be very large, so you may not process it by 32-bit integers. 
             
     

    Source

    求高精度的卡特兰数。

    1.java代码,套公式就可以了。

    import java.io.*;  
    import java.util.*;  
    import java.math.BigInteger;  
      
      
    public class Main  
    {  
        public static void main(String args[])  
        {         
            BigInteger[] a = new BigInteger[101];  
            a[0] = BigInteger.ZERO;  
            a[1] = BigInteger.valueOf(1);  
            for(int i = 2; i <= 100; ++i)  
                a[i] = a[i - 1].multiply(BigInteger.valueOf(4 * i - 2)).divide(BigInteger.valueOf(i+1));  
                Scanner in = new Scanner(System.in);  
                int n;  
                while(in.hasNext())  
                {  
                    n = in.nextInt();  
                    System.out.println(a[n]);  
                }  
        }  
    }  

     2.C++代码,kuangbin模板

    //h( n ) = ( ( 4*n-2 )/( n+1 )*h( n-1 ) );
    
    
    #include<stdio.h>
    
    //*******************************
    //打表卡特兰数
    //第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;
    //注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。 
    //*********************************
    int a[105][100];
    void ktl()
    {
        int i,j,yu,len;
        a[2][0]=1;
        a[2][1]=2;
        a[1][0]=1;
        a[1][1]=1;
        len=1;
        for(i=3;i<101;i++)
        {
            yu=0;
            for(j=1;j<=len;j++)
            {
                int t=(a[i-1][j])*(4*i-2)+yu;
                yu=t/10;
                a[i][j]=t%10;
            }    
            while(yu)
            {
                a[i][++len]=yu%10;
                yu/=10;
            }
            for(j=len;j>=1;j--)
            {
                int t=a[i][j]+yu*10;
                a[i][j]=t/(i+1);
                yu = t%(i+1);
            }        
            while(!a[i][len])
            {
                len--;
            }    
            a[i][0]=len;
        }    
        
    }    
    int main()
    {
        ktl();
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            for(int i=a[n][0];i>0;i--)
            {
                printf("%d",a[n][i]);
            }    
            puts("");
        }    
        return 0;
    }

    3.C++代码

    #include <iostream>  
    #include <stdio.h>  
    #include <cmath>  
    using namespace std;  
      
    int a[105][105];    //大数卡特兰数  
    int b[105];         //卡特兰数的长度  
      
    void catalan()  //求卡特兰数  
    {  
        int i, j, len, carry, temp;  
        a[1][0] = b[1] = 1;  
        len = 1;  
        for(i = 2; i <= 100; i++)  
        {  
            for(j = 0; j < len; j++)    //乘法  
                a[i][j] = a[i-1][j]*(4*(i-1)+2);  
            carry = 0;  
            for(j = 0; j < len; j++)    //处理相乘结果  
            {  
                temp = a[i][j] + carry;  
                a[i][j] = temp % 10;  
                carry = temp / 10;  
            }  
            while(carry)    //进位处理  
            {  
                a[i][len++] = carry % 10;  
                carry /= 10;  
            }  
            carry = 0;  
            for(j = len-1; j >= 0; j--) //除法  
            {  
                temp = carry*10 + a[i][j];  
                a[i][j] = temp/(i+1);  
                carry = temp%(i+1);  
            }  
            while(!a[i][len-1])     //高位零处理  
                len --;  
            b[i] = len;  
        }  
    }  
      
    int main()  
    {  
        int i, n;  
        catalan();  
        while(scanf("%d", &n) != EOF)  
        {  
            for(i = b[n]-1; i>=0; i--)  
            {  
                printf("%d", a[n][i]);  
            }  
            printf("
    ");  
        }  
      
        return 0;  
    }  
  • 相关阅读:
    队列

    有序数组
    集合:一条规则决定性能
    基础数据结构:数组
    空间复杂度
    插入排序
    重新认识Javascript的一些误区总结
    Knockout: 使用knockout validation插件进行校验, 给未通过校验的输入框添加红色边框突出显示.
    Knockout: 使用CSS绑定和event的blur失去焦点事件, 给未通过校验的输入框添加红色边框突出显示.
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5343085.html
Copyright © 2020-2023  润新知