• bzoj4974 [Lydsy1708月赛]字符串大师


    Description

    一个串 (T)(S) 的循环节,当且仅当存在正整数 (k) ,使得 (S)(T^k) (即 (T) 重复 (k) 次)的前缀,比如 (mathrm{abcd})(mathrm{abcdabcdab}) 的循环节。给定一个长度为 (n) 的仅由小写字符构成的字符串 (S) ,请对于每个 (k(1le kle n)) ,求出 (S) 长度为 (k) 的前缀的最短循环节的长度 (per_i) 。字符串大师小 (mathrm{Q}) 觉得这个问题过于简单,于是花了一分钟将其 (mathrm{AC}) 了,他想检验你是否也是字符串大师。

    (mathrm{Q}) 告诉你 (n) 以及 (per_1,per_2,cdots ,per_n) ,请找到一个长度为 (n) 的小写字符串 (S) ,使得 (S) 能对应上 (per)

    Input

    第一行包含一个正整数 (n(1le nle 100000)) ,表示字符串的长度。

    第二行包含 (n) 个正整数 (per_1,per_2,...per_n(1le per_ile i)) ,表示每个前缀的最短循环节长度。

    输入数据保证至少存在一组可行解。

    Output

    输出一行一个长度为 (n) 的小写字符串 (S) ,即某个满足条件的 (S)

    若有多个可行的 (S) ,输出字典序最小的那一个。

    Sample

    Sample Input

    5
    1 2 2 2 5
    

    Sample Output

    ababb
    

    Solution

    首先有一个结论, (pre[i]=i-next[i]) 。所以这道题可以转化为已知 (^*next) 求原字符串。

    我们来想想 (mathrm{kmp}) 的过程。

    void get_next() {
    	int t1 = 0, t2 = next[0] = -1;
    	while(t1 < len2)
    		if(t2 == -1 || s2[t1] == s2[t2]) next[++t1] = ++t2;
    		else t2 = next[t2];
    }
    

    所以我们就得到了一堆相等和不等关系,随便做就可以了。

    #include<bits/stdc++.h>
    using namespace std;
    
    #define N 100001
    
    inline int read() {
    	int x = 0; char ch = getchar(); while (!isdigit(ch))  ch = getchar();
    	while (isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar(); return x;
    }
    
    char s[N];
    int n, nxt[N];
    bool f[N][27];
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n; i++) nxt[i] = i - read();
    	int i = 0, j = nxt[0] = -1, k;
    	while (i < n) {
    		if (nxt[i + 1] == j + 1) {
    			if (j ^ -1) s[i] = s[j];
    			else {
    				for (k = 0; k < 26; k++) if (!f[i][k]) break;
    				s[i] = 'a' + k;
    			}
    			i++, j++;
    		}
    		else f[i][s[j] - 'a'] = 1, j = nxt[j];
    	}
    	printf("%s", s);
    	return 0;
    }
    
  • 相关阅读:
    一个简单的MVVM雏形
    sass学习笔记1
    col标签的相关实验
    背景半透明rgba最佳实践
    angular性能优化心得
    环视非捕获分组
    5月23日Google就宣布了Chrome 36 beta
    浏览器 user-agent 字符串的故事
    迷你MVVM框架 avalonjs 沉思录 第3节 动态模板
    迷你MVVM框架 avalonjs 1.3.1发布
  • 原文地址:https://www.cnblogs.com/aziint/p/8643574.html
Copyright © 2020-2023  润新知