• 【计算几何】【二分答案】【最大流】bzoj1822 [JSOI2010]Frozen Nova 冷冻波


    用三角形面积什么的算算点到直线的距离之类……其实相切的情况是可行的……剩下的就跟某SDOI2015一样了。

    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<queue>
    using namespace std;
    #define N 201
    #define EPS 0.000001
    #define INF 2147483647
    struct Point{int x,y;}jl[N];
    typedef Point Vector;
    typedef double db;
    Vector operator - (Point a,Point b){return (Vector){a.x-b.x,a.y-b.y};}
    int Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
    int sqr(int x){return x*x;}
    db dis(Point a,Point b){return sqrt((db)(sqr(a.x-b.x)+sqr(a.y-b.y)));}
    struct WY{Point p; int r,t;}wy[N];
    struct SHU{Point p; int r;}shu[N];
    int Abs(int x){return x<0?(-x):x;}
    bool can[N][N];
    int n,m,K;
    bool Can_Attack(WY a,Point b)
    {
    	if((db)a.r-dis(a.p,b)<EPS) return 0;
    	for(int i=1;i<=K;++i)
    	  if((db)Abs(Cross(a.p-b,shu[i].p-b))/dis(a.p,b)-(db)shu[i].r<-EPS)
    	    return 0;
    	return 1;
    }
    bool Must_Be_Attacked(int x)
    {
    	for(int i=1;i<=n;++i)
    	  if(can[i][x])
    	    return 1;
    	return 0;
    }
    queue<int>q;
    int nn,T,S;
    int v[2*N*(N+1)],en,first[N*2+3],next[2*N*(N+1)],cap[2*N*(N+1)];
    int d[N*2+3],cur[N*2+3];
    void AddEdge(int U,int V,int Cap)
    {
    	v[en]=V; cap[en]=Cap; next[en]=first[U]; first[U]=en++;
    	v[en]=U; cap[en]=0; next[en]=first[V]; first[V]=en++;
    }
    bool bfs()
    {
    	memset(d,-1,sizeof(int)*(nn+1));
    	d[S]=0; q.push(S);
    	while(!q.empty())
    	  {
    	  	int U=q.front(); q.pop();
    	  	for(int i=first[U];i!=-1;i=next[i])
    	  	  if(cap[i]&&d[v[i]]==-1)
    	  	    {
    	  	      d[v[i]]=d[U]+1;
    	  	      q.push(v[i]);
    	  	    }
    	  }
    	return d[T]!=-1;
    }
    int dfs(int U,int a)
    {
    	if(U==T||(!a)) return a;
    	int Flow=0,f;
    	for(int i=first[U];i!=-1;i=next[i])
    	  if(d[v[i]]==d[U]+1&&(f=dfs(v[i],min(a,cap[i]))))
    	    {
    	      cap[i]-=f;
    	      cap[i^1]+=f;
    	      Flow+=f;
    	      a-=f;
    	      if(!a)
    	        break;
    	    }
    	if(!Flow) d[U]=-1;
    	return Flow;
    }
    int MaxFlow()
    {
    	int Flow=0,tmp;
    	while(bfs())
    	  {
    	  	memcpy(cur,first,sizeof(int)*(nn+1));
    	  	while(tmp=dfs(S,INF)) Flow+=tmp;
    	  }
    	return Flow;
    }
    bool check(int Lim)
    {
    	memset(first,-1,sizeof(int)*(nn+1));
    	en=0;
    	for(int i=1;i<=n;++i) AddEdge(S,1+i,(!Lim)?1:(Lim/wy[i].t+1));
    	for(int i=1;i<=m;++i) AddEdge(1+n+i,T,1);
    	for(int i=1;i<=n;++i) for(int j=1;j<=m;++j) if(can[i][j]) AddEdge(1+i,1+n+j,INF);
    	return MaxFlow()==m?1:0;
    }
    int main()
    {
    	scanf("%d%d%d",&n,&m,&K);
    	for(int i=1;i<=n;++i) scanf("%d%d%d%d",&wy[i].p.x,&wy[i].p.y,&wy[i].r,&wy[i].t);
    	for(int i=1;i<=m;++i) scanf("%d%d",&jl[i].x,&jl[i].y);
    	for(int i=1;i<=K;++i) scanf("%d%d%d",&shu[i].p.x,&shu[i].p.y,&shu[i].r);
    	for(int i=1;i<=n;++i)
    	  for(int j=1;j<=m;++j)
    	    can[i][j]=Can_Attack(wy[i],jl[j]);
    	for(int j=1;j<=m;++j) if(!Must_Be_Attacked(j)) {puts("-1"); return 0;}
    	T=nn=n+m+2; S=1;
    	int l=0,r=4000000;
    	while(r>l)
    	  {
    	  	int mid=(l+r>>1);
    	  	if(check(mid)) r=mid;
    	  	else l=mid+1;
    	  }
    	printf("%d
    ",l);
    	return 0;
    }
  • 相关阅读:
    奇偶游戏(带权并查集)
    银河英雄传说(边带权并查集)
    程序自动分析(并查集+离散化)
    关于树状数组的小总结(树状数组)
    你能回答这些问题吗 (线段树)
    Phython 3 笔记3 —— 类,库与文件的读写
    Phython 3 笔记2 —— 基础语法
    Phython 3 笔记1 —— 基础容器
    CRJ巨佬gjd算法伪代码
    CRJ巨佬的gjd算法模板
  • 原文地址:https://www.cnblogs.com/autsky-jadek/p/4433294.html
Copyright © 2020-2023  润新知