• About Invertible Matrices Jun


    Question: Let $X $ be a Banach space and let $T $ and ${T^{ - 1}}$ belong to ${\cal B}\left( X \right)$. Prove that if $S \in {\cal B}\left( X \right)$ and $\left\| {S - T} \right\| < \frac{1}{{\left\| {{T^{ - 1}}} \right\|}}$, then $S^{ -1 } $ exists. (FOUNDATIONS OF MODERN ANALYSIS, Avner Friedman)

    Here is a proof for matrix version. As we want to prove that $S$ is invertible, we are equivalently trying to prove $N\left( S \right) = \left\{ 0 \right\}$. The conditons we have can induce that

    \[\begin{array}{l}
    {\rm{    }}\left\| {S - T} \right\| < \frac{1}{{\left\| {{T^{ - 1}}} \right\|}}\\
     \Rightarrow \left\| {{T^{ - 1}}} \right\|\left\| {S - T} \right\| < 1
     \Rightarrow \left\| {{T^{ - 1}}\left( {S - T} \right)} \right\| < 1\\
     \Rightarrow \left\| {{T^{ - 1}}S - I} \right\| < 1\\
     \Rightarrow 1 - \left\| {{T^{ - 1}}S} \right\| < 1
     \Rightarrow 0 < \left\| {{T^{ - 1}}S} \right\|
    \end{array}\]

    Actually, this may not help too much. We shall prove that $\forall x \ne 0,Sx \ne {\rm{0}}$, or equivalently, $\forall \left\| x \right\| \ne {\rm{0}},Sx \ne {\rm{0}}$. We then next try to do this:

    \[\begin{array}{l}
    \left\| x \right\| = \left\| {\left( {I - {T^{ - 1}}S + {T^{ - 1}}S} \right)x} \right\|
     = \left\| {\left( {I - {T^{ - 1}}S} \right)x + \left( {{T^{ - 1}}S} \right)x} \right\|\\
     \le \left\| {\left( {I - {T^{ - 1}}S} \right)x} \right\| + \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|
     \le \left\| {I - {T^{ - 1}}S} \right\|\left\| x \right\| + \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|
    \end{array}\]

    Obviously, we can conclude that $0 < \left\| {\left( {{T^{ - 1}}S} \right)x} \right\|$ which is exactly what we want (since $\left\| {{T^{ - 1}}} \right\| > 0 $, $0 < \left\| {\left( {{T^{ - 1}}S} \right)x} \right\| < \left\| {{T^{ - 1}}} \right\|\left\| {Sx} \right\| \Rightarrow \left\| {Sx} \right\| > 0 \Rightarrow Sx \ne 0$).

    Note: This theorem tells us that the lower bound (actually the greatest low bound, D.Lee & P.Y.Wu) of the distance between $T$ and the nearest sigular matrices. Once a matrix with the distance $\left\| {T - S} \right\|$ strictly lower than $\frac{1}{{\left\| {{T^{ - 1}}} \right\|}}$, it's then invertible.

    Example: ${\left( {I - A} \right)^{ - 1}} = \sum\limits_{i = 0}^\infty  {{A^i}} $ if $\left\| A \right\| < 1$. The condition is just to make sure that whether ${I - A}$ is invertible or not, comparing to the identity matrix $I$. That is, by the theorem above, if $\left\| {\left( {I - A} \right) - I} \right\| < \frac{1}{{\left\| {{I^{ - 1}}} \right\|}} = 1$ or $\left\| A \right\| < 1$, then the matrix ${I - A}$ is invertible and the expansion is meaningful.

  • 相关阅读:
    从Oracle提供两种cube产品说开
    Sql Server DWBI的几个学习资料
    Unload Oracle data into text file
    初学Java的几个tips
    我常用的Oracle知识点汇总
    benefits by using svn
    如何在windows上使用putty来显示远端linux的桌面
    building commercial website using Microsoft tech stack
    Understand Thread and Lock
    Update google calendar by sunbird
  • 原文地址:https://www.cnblogs.com/aujun/p/3802661.html
Copyright © 2020-2023  润新知