一 . 管道 (了解)
from multiprocessing import Process, Pipe
def f1(conn):
# 管道的recv 里面不用写数字
from_main_process = conn.recv()
print('我是子程序')
print(from_main_process)
if __name__ == '__main__':
# 创建一个管道,返回管道的两端conn1 和 conn2 但是只能在一边发消息,另一端接消息,自己这一段是不能接的
conn1, conn2 = Pipe()
p1 = Process(target=f1,args=(conn2,))
p1.start()
# 管道的发送里面也不用发字节
conn1.send('oh baby')
print('我是爸爸')
# 数据接收一次就没有了.也就是说,往管道里面传一次消息,即使有多个进程都来接收,但是只能有一个接收成功
二 . 事件(了解)
import time
from multiprocessing import Process,Event
def f1(e):
time.sleep(2)
n = 100
print('子进程计算结果为',n)
# 将初识对象改为True
e.set()
# 查看现在的状态
print('现在的状态是->',e.is_set())
if __name__ == '__main__':
# 创建事件对象,初识状态是False
e = Event()
p = Process(target=f1,args=(e,))
p.start()
print('主进程等待...')
# e.clear() # clear 是将状态改为False
# 这个对象的状态为False的时候,就在wait的地方等待
e.wait()
print('结果已经写入文件了,可以拿到这值')
三 . 信号量(了解)
import time
import random
from multiprocessing import Process,Semaphore
def f1(i, s):
s.acquire() # 加锁
print('男嘉宾%s号到了' % i)
time.sleep(random.randint(1,3))
s.release() # 解锁 每有一个解开就会有一个进去
if __name__ == '__main__':
s = Semaphore(3) # 计数器 一起能去3个进程
for i in range(10):
p = Process(target=f1,args=(i, s))
p.start()
四. 进程池(重点)
进程的创建和销毁是很浪费时间的,影响代码执行效率. 所以说进程池比多进程同时执行的时候会省很多时间,因为进程池没有创建和销毁这一过程.
import time
from multiprocessing import Process,Pool
def f1(n):
pass
if __name__ == '__main__':
#统计进程池执行100个任务的时间
s_time = time.time()
# 里面这个参数是指定进程池中有多少个进程用的,4表示4个进程,如果不传参数,默认开启的进程数一般是cpu的个数
pool = Pool(4)
pool.map(f1,range(100)) #参数数据必须是可迭代的,异步提交任务,自带close和join功能
e_time = time.time()
dif_time = e_time - s_time
#统计100个进程,来执行100个任务的执行时间
p_s_t = time.time() #多进程起始时间
p_list = []
for i in range(100):
p = Process(target=f1,args=(i,))
p.start()
# 要加入列表里面之后把所有的都加上join
p_list.append(p)
[pp.join() for pp in p_list]
p_e_t = time.time()
p_dif_t = p_e_t - p_s_t
print('进程池的时间:',dif_time)
print('多进程的执行时间:',p_dif_t)
# 进程池的时间: 0.17912554740905762
# 多进程的执行时间: 4.200979232788086
同步方法
import time
from multiprocessing import Process,Pool
def f1(n):
time.sleep(1)
return n*n
if __name__ == '__main__':
pool = Pool(4)
for i in range(10):
# 进程池的同步方法,将任务变成了串行
res = pool.apply(f1,args=(i,))
print(res)
异步方法
import time
from multiprocessing import Process,Pool
def f1(n):
time.sleep(2)
return n*n
if __name__ == '__main__':
pool = Pool()
res_list = []
for i in range(5):
#异步给进程池提交任务
res = pool.apply_async(f1,args=(i,))
# print(res) # 得到的是pool对象 <multiprocessing.pool.ApplyResult object at 0x000000AEE8074668>
res_list.append(res)
print('等待所有任务执行完')
# pool.close() #锁住进程池,意思就是不让其他的程序再往这个进程池里面提交任务了,工作中一般不会锁
# pool.join()
#打印结果,如果异步提交之后的结果对象
for i in res_list:
# get()方法就是有就拿,没有就等着
print(i.get()) # 拿到的是返回结果 0,1,4,9,16
五. 回调函数
from multiprocessing import Pool,Process
def f1(n):
print('>>>>',n)
return n*n
def call_back_func(n):
print('回调函数中的结果:',n)
if __name__ == '__main__':
pool = Pool(4)
# callback就是把f1 的返回值当参数传入函数
res = pool.apply_async(f1,args=(5,),callback=call_back_func)
pool.close()
pool.join()