题意:考虑由$n$个结点构成的无向图,每条边的长度均为$1$,问有多少种构图方法使得结点$1$与任意其它节点之间的最短距离均不等于$k$(无法到达时距离等于无穷大),输出答案对$1e9+7$取模。$1 leq n, k leq 60$。
分析:只需要考虑那些和结点$1$在同一个连通块的结点,考虑对包含结点$1$的连通图的等价类划分:首先是结点数目,其次是所有结点到达结点$1$的最短距离的最大值,再次是最短距离等于该最大值的结点数目,因此用$dp(i, j, k)$表示与$1$在同一个连通分量的图中,结点数目为$i$,最短距离最大值为$k$,距离$1$最远的结点数目为$j$的数目。考虑这样的构图方式:图$(i, j, k)$中到结点$1$距离为$k$的结点必然是其子图中距离$1$距离为$k-1$的结点的直接后继,因此考虑删除$j$个这样的点,得到图$(i-j, u, k - 1)$,其中$u$表示子图中到结点$1$距离为$k-1$的结点数目。由于$j$个点内部的连接方式不影响(不会减少)其距离,因此全部$2^{frac{j(j-1)}{2}}$种连接方法均是合法的,而每个结点至少是$u$个结点之一的后继,因此连法有$(2^{u}-1)^j$种,又因为所有点都不相同,组合系数为$ extrm {C}_{i-1}^{j}$,因此可以这样计算图类$(i,j,k)$的总数:$dp(i, j, k) = sum_{u=1}^{i-j}{dp(i-j,u,k-1)cdot extrm {C}_{i-1}^{j}cdot {(2^{u}-1)}^j cdot 2^{frac{j(j-1)}{2}}}$。再考虑边界条件,显然$dp(1,1,0)=1$,其余在初始时清零即可。这样预处理的时间复杂度是$O(n^3 cdot n) = O(n^4)$的(快速幂看成常数时间)。
代码如下:
1 #include <algorithm> 2 #include <cstdio> 3 #include <cstring> 4 #include <string> 5 #include <queue> 6 #include <map> 7 #include <set> 8 #include <stack> 9 #include <ctime> 10 #include <cmath> 11 #include <iostream> 12 #include <assert.h> 13 #define PI acos(-1.) 14 #pragma comment(linker, "/STACK:102400000,102400000") 15 #define max(a, b) ((a) > (b) ? (a) : (b)) 16 #define min(a, b) ((a) < (b) ? (a) : (b)) 17 #define mp std :: make_pair 18 #define st first 19 #define nd second 20 #define keyn (root->ch[1]->ch[0]) 21 #define lson (u << 1) 22 #define rson (u << 1 | 1) 23 #define pii std :: pair<int, int> 24 #define pll pair<ll, ll> 25 #define pb push_back 26 #define type(x) __typeof(x.begin()) 27 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++) 28 #define FOR(i, s, t) for(int i = (s); i <= (t); i++) 29 #define ROF(i, t, s) for(int i = (t); i >= (s); i--) 30 #define dbg(x) std::cout << x << std::endl 31 #define dbg2(x, y) std::cout << x << " " << y << std::endl 32 #define clr(x, i) memset(x, (i), sizeof(x)) 33 #define maximize(x, y) x = max((x), (y)) 34 #define minimize(x, y) x = min((x), (y)) 35 using namespace std; 36 typedef long long ll; 37 const int int_inf = 0x3f3f3f3f; 38 const ll ll_inf = 0x3f3f3f3f3f3f3f3f; 39 const int INT_INF = (int)((1ll << 31) - 1); 40 const double double_inf = 1e30; 41 const double eps = 1e-14; 42 typedef unsigned long long ul; 43 typedef unsigned int ui; 44 inline int readint(){ 45 int x; 46 scanf("%d", &x); 47 return x; 48 } 49 inline int readstr(char *s){ 50 scanf("%s", s); 51 return strlen(s); 52 } 53 //Here goes 2d geometry templates 54 struct Point{ 55 double x, y; 56 Point(double x = 0, double y = 0) : x(x), y(y) {} 57 }; 58 typedef Point Vector; 59 Vector operator + (Vector A, Vector B){ 60 return Vector(A.x + B.x, A.y + B.y); 61 } 62 Vector operator - (Point A, Point B){ 63 return Vector(A.x - B.x, A.y - B.y); 64 } 65 Vector operator * (Vector A, double p){ 66 return Vector(A.x * p, A.y * p); 67 } 68 Vector operator / (Vector A, double p){ 69 return Vector(A.x / p, A.y / p); 70 } 71 bool operator < (const Point& a, const Point& b){ 72 return a.x < b.x || (a.x == b.x && a.y < b.y); 73 } 74 int dcmp(double x){ 75 if(abs(x) < eps) return 0; 76 return x < 0 ? -1 : 1; 77 } 78 bool operator == (const Point& a, const Point& b){ 79 return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; 80 } 81 double Dot(Vector A, Vector B){ 82 return A.x * B.x + A.y * B.y; 83 } 84 double Len(Vector A){ 85 return sqrt(Dot(A, A)); 86 } 87 double Angle(Vector A, Vector B){ 88 return acos(Dot(A, B) / Len(A) / Len(B)); 89 } 90 double Cross(Vector A, Vector B){ 91 return A.x * B.y - A.y * B.x; 92 } 93 double Area2(Point A, Point B, Point C){ 94 return Cross(B - A, C - A); 95 } 96 Vector Rotate(Vector A, double rad){ 97 //rotate counterclockwise 98 return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); 99 } 100 Vector Normal(Vector A){ 101 double L = Len(A); 102 return Vector(-A.y / L, A.x / L); 103 } 104 void Normallize(Vector &A){ 105 double L = Len(A); 106 A.x /= L, A.y /= L; 107 } 108 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){ 109 Vector u = P - Q; 110 double t = Cross(w, u) / Cross(v, w); 111 return P + v * t; 112 } 113 double DistanceToLine(Point P, Point A, Point B){ 114 Vector v1 = B - A, v2 = P - A; 115 return abs(Cross(v1, v2)) / Len(v1); 116 } 117 double DistanceToSegment(Point P, Point A, Point B){ 118 if(A == B) return Len(P - A); 119 Vector v1 = B - A, v2 = P - A, v3 = P - B; 120 if(dcmp(Dot(v1, v2)) < 0) return Len(v2); 121 else if(dcmp(Dot(v1, v3)) > 0) return Len(v3); 122 else return abs(Cross(v1, v2)) / Len(v1); 123 } 124 Point GetLineProjection(Point P, Point A, Point B){ 125 Vector v = B - A; 126 return A + v * (Dot(v, P - A) / Dot(v, v)); 127 } 128 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){ 129 //Line1:(a1, a2) Line2:(b1,b2) 130 double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), 131 c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); 132 return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; 133 } 134 bool OnSegment(Point p, Point a1, Point a2){ 135 return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 -p)) < 0; 136 } 137 Vector GetBisector(Vector v, Vector w){ 138 Normallize(v), Normallize(w); 139 return Vector((v.x + w.x) / 2, (v.y + w.y) / 2); 140 } 141 142 bool OnLine(Point p, Point a1, Point a2){ 143 Vector v1 = p - a1, v2 = a2 - a1; 144 double tem = Cross(v1, v2); 145 return dcmp(tem) == 0; 146 } 147 struct Line{ 148 Point p; 149 Vector v; 150 Point point(double t){ 151 return Point(p.x + t * v.x, p.y + t * v.y); 152 } 153 Line(Point p, Vector v) : p(p), v(v) {} 154 }; 155 struct Circle{ 156 Point c; 157 double r; 158 Circle(Point c, double r) : c(c), r(r) {} 159 Circle(int x, int y, int _r){ 160 c = Point(x, y); 161 r = _r; 162 } 163 Point point(double a){ 164 return Point(c.x + cos(a) * r, c.y + sin(a) * r); 165 } 166 }; 167 int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, std :: vector<Point>& sol){ 168 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; 169 double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r; 170 double delta = f * f - 4 * e * g; 171 if(dcmp(delta) < 0) return 0; 172 if(dcmp(delta) == 0){ 173 t1 = t2 = -f / (2 * e); sol.pb(L.point(t1)); 174 return 1; 175 } 176 t1 = (-f - sqrt(delta)) / (2 * e); sol.pb(L.point(t1)); 177 t2 = (-f + sqrt(delta)) / (2 * e); sol.pb(L.point(t2)); 178 return 2; 179 } 180 double angle(Vector v){ 181 return atan2(v.y, v.x); 182 //(-pi, pi] 183 } 184 int GetCircleCircleIntersection(Circle C1, Circle C2, std :: vector<Point>& sol){ 185 double d = Len(C1.c - C2.c); 186 if(dcmp(d) == 0){ 187 if(dcmp(C1.r - C2.r) == 0) return -1; //two circle duplicates 188 return 0; //two circles share identical center 189 } 190 if(dcmp(C1.r + C2.r - d) < 0) return 0; //too close 191 if(dcmp(abs(C1.r - C2.r) - d) > 0) return 0; //too far away 192 double a = angle(C2.c - C1.c); // angle of vector(C1, C2) 193 double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d)); 194 Point p1 = C1.point(a - da), p2 = C1.point(a + da); 195 sol.pb(p1); 196 if(p1 == p2) return 1; 197 sol.pb(p2); 198 return 2; 199 } 200 int GetPointCircleTangents(Point p, Circle C, Vector* v){ 201 Vector u = C.c - p; 202 double dist = Len(u); 203 if(dist < C.r) return 0;//p is inside the circle, no tangents 204 else if(dcmp(dist - C.r) == 0){ 205 // p is on the circles, one tangent only 206 v[0] = Rotate(u, PI / 2); 207 return 1; 208 }else{ 209 double ang = asin(C.r / dist); 210 v[0] = Rotate(u, -ang); 211 v[1] = Rotate(u, +ang); 212 return 2; 213 } 214 } 215 int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){ 216 //a[i] store point of tangency on Circle A of tangent i 217 //b[i] store point of tangency on Circle B of tangent i 218 //six conditions is in consideration 219 int cnt = 0; 220 if(A.r < B.r) { std :: swap(A, B); std :: swap(a, b); } 221 int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y); 222 int rdiff = A.r - B.r; 223 int rsum = A.r + B.r; 224 if(d2 < rdiff * rdiff) return 0; // one circle is inside the other 225 double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x); 226 if(d2 == 0 && A.r == B.r) return -1; // two circle duplicates 227 if(d2 == rdiff * rdiff){ // internal tangency 228 a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++; 229 return 1; 230 } 231 double ang = acos((A.r - B.r) / sqrt(d2)); 232 a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang); 233 a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang); 234 if(d2 == rsum * rsum){ 235 //one internal tangent 236 a[cnt] = A.point(base); 237 b[cnt++] = B.point(base + PI); 238 }else if(d2 > rsum * rsum){ 239 //two internal tangents 240 double ang = acos((A.r + B.r) / sqrt(d2)); 241 a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI); 242 a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI); 243 } 244 return cnt; 245 } 246 Point ReadPoint(){ 247 double x, y; 248 scanf("%lf%lf", &x, &y); 249 return Point(x, y); 250 } 251 Circle ReadCircle(){ 252 double x, y, r; 253 scanf("%lf%lf%lf", &x, &y, &r); 254 return Circle(x, y, r); 255 } 256 //Here goes 3d geometry templates 257 struct Point3{ 258 double x, y, z; 259 Point3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {} 260 }; 261 typedef Point3 Vector3; 262 Vector3 operator + (Vector3 A, Vector3 B){ 263 return Vector3(A.x + B.x, A.y + B.y, A.z + B.z); 264 } 265 Vector3 operator - (Vector3 A, Vector3 B){ 266 return Vector3(A.x - B.x, A.y - B.y, A.z - B.z); 267 } 268 Vector3 operator * (Vector3 A, double p){ 269 return Vector3(A.x * p, A.y * p, A.z * p); 270 } 271 Vector3 operator / (Vector3 A, double p){ 272 return Vector3(A.x / p, A.y / p, A.z / p); 273 } 274 double Dot3(Vector3 A, Vector3 B){ 275 return A.x * B.x + A.y * B.y + A.z * B.z; 276 } 277 double Len3(Vector3 A){ 278 return sqrt(Dot3(A, A)); 279 } 280 double Angle3(Vector3 A, Vector3 B){ 281 return acos(Dot3(A, B) / Len3(A) / Len3(B)); 282 } 283 double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){ 284 return abs(Dot3(p - p0, n)); 285 } 286 Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){ 287 return p - n * Dot3(p - p0, n); 288 } 289 Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){ 290 Vector3 v = p2 - p1; 291 double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1)); 292 return p1 + v * t;//if t in range [0, 1], intersection on segment 293 } 294 Vector3 Cross(Vector3 A, Vector3 B){ 295 return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x); 296 } 297 double Area3(Point3 A, Point3 B, Point3 C){ 298 return Len3(Cross(B - A, C - A)); 299 } 300 class cmpt{ 301 public: 302 bool operator () (const int &x, const int &y) const{ 303 return x > y; 304 } 305 }; 306 307 int Rand(int x, int o){ 308 //if o set, return [1, x], else return [0, x - 1] 309 if(!x) return 0; 310 int tem = (int)((double)rand() / RAND_MAX * x) % x; 311 return o ? tem + 1 : tem; 312 } 313 void data_gen(){ 314 srand(time(0)); 315 freopen("in.txt", "w", stdout); 316 int kases = 10; 317 printf("%d ", kases); 318 while(kases--){ 319 int sz = 2e4; 320 int m = 1e5; 321 printf("%d %d ", sz, m); 322 FOR(i, 1, sz) printf("%d ", Rand(100, 1)); 323 printf(" "); 324 FOR(i, 1, sz) printf("%d ", Rand(1e9, 1)); 325 printf(" "); 326 FOR(i, 1, m){ 327 int l = Rand(sz, 1); 328 int r = Rand(sz, 1); 329 int c = Rand(1e9, 1); 330 printf("%d %d %d %d ", l, r, c, Rand(100, 1)); 331 } 332 } 333 } 334 335 struct cmpx{ 336 bool operator () (int x, int y) { return x > y; } 337 }; 338 339 const int maxn = 65; 340 const int mod = 1e9 + 7; 341 ll power(ll a, ll p, ll mod){ 342 ll ans = 1; 343 a %= mod; 344 while(p){ 345 if(p & 1) ans = ans * a % mod; 346 p >>= 1; 347 a = a * a % mod; 348 } 349 return ans; 350 } 351 ll dp[maxn][maxn][maxn]; 352 ll C[maxn][maxn]; 353 ll pow2[maxn * maxn]; 354 ll pow_pow[maxn][maxn]; 355 void init(){ 356 clr(dp, 0), clr(C, 0); 357 int lim = 60; 358 clr(C, 0); 359 C[0][0] = 1; 360 FOR(i, 1, lim) C[i][0] = C[i][i] = 1; 361 FOR(i, 1, lim) FOR(j, 1, i - 1) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod; 362 pow2[0] = 1; 363 FOR(i, 1, lim * lim) pow2[i] = pow2[i - 1] * 2 % mod; 364 FOR(i, 1, lim) FOR(j, 1, lim) pow_pow[i][j] = power((1ll << i) - 1, j, mod); 365 dp[1][1][0] = 1; 366 FOR(i, 0, lim) FOR(k, 1, i) FOR(j, 1, i) FOR(u, 1, i - j){ 367 ll tem = C[i - 1][j] * pow_pow[u][j] % mod * pow2[C[j][2]] % mod; 368 dp[i][j][k] = (dp[i][j][k] + dp[i - j][u][k - 1] * tem % mod) % mod; 369 } 370 } 371 ll cal(int n, int k){ 372 ll ans = 0; 373 FOR(u, 1, n) FOR(i, 0, k - 1) FOR(j, 1, u){ 374 ll para = pow2[C[n - u][2]] * C[n - 1][n - u] % mod; 375 ans = (ans + para * dp[u][j][i] % mod) % mod; 376 } 377 return ans; 378 } 379 int main(){ 380 //data_gen(); return 0; 381 //C(); return 0; 382 int debug = 0; 383 if(debug) freopen("in.txt", "r", stdin); 384 //freopen("out.txt", "w", stdout); 385 init(); 386 int T = readint(); 387 while(T--){ 388 int n = readint(), k = readint(); 389 printf("%lld ", cal(n, k)); 390 } 391 return 0; 392 }