• 图论$cdot$2-SAT问题


    2-SAT问题是这样的:有$n$个布尔变量$x_i$,另有$m$个需要满足的条件,每个条件的形式都是“$x_i$为真/假或者$x_j$为真/假”。比如:"$x_1$为真或者$x_3$为假“。注意这里的”或“是指两个条件至少有一个是正确的,比如$x_1$和$x_3$一共有$3$中组合满足"$x_1$为真或者$x_3$为假“。2-SAT问题的目标是给每个变量赋值,使得所有条件得到满足。求解2-SAT问题一般比较常见方法是构造一张有向图$G$,其中每个变量$x_i$拆成两个结点$2i$和$2i+1$,分别表示$x_i$为假和$x_i$为真。最后要为每个变量选择其中一个结点标记。比如,若标记了节点$2i$,表示$x_i$为假;如果标记了$2i+1$,表示$x_i$为真。对于“$x_i$为假或者$x_j$为假”这样的条件,我们连一条有向边$2i+1 ightarrow 2j$,表示如果标记节点$2i+1$那么也必须标记结点$j$,同理还需要连一条有向边$2j+1 ightarrow 2i$。对于其他情况,也可以类似连边。换句话说,每个条件对应两条“对称”的边。接下来逐一考虑每个没有赋值的变量,设为$x_i$。我们首先假定它为假,然后标记借点$2_i$,并且沿着有向边标记所有能标记的结点。如果标记过程中发现某个变量对应的两个结点都被标记,则“$x_i$为假”这个假定不成立,需要改成“$x_i$为真”,然后重新标记。注意,该算法无回溯过程。如果当前考虑的变量不管赋值为真还是假都会引起矛盾,可以证明整个2-SAT问题无解(即使调整以前赋值的变量也没用)。这是很显然的,每个变量只会影响到关系到该变量的表达式的取值,因此对于未赋值的变量一定与之前的赋值无关,可以分开考虑,整个问题有解需要满足每个块都有解。下面给出求解2-SAT问题的代码:

     1 struct _2_sat{
     2     int n;
     3     vector<int> G[maxn << 1];
     4     bool mark[maxn << 1];
     5     int S[maxn << 1], c;
     6     bool dfs(int x){
     7         if(mark[x ^ 1]) return 0;
     8         if(mark[x]) return 1;
     9         mark[x] = 1;
    10         S[c++] = x;
    11         FOR(i, 0, G[x].size() - 1) if(!dfs(G[x][i])) return 0;
    12         return 1;
    13     }
    14     void init(int n){
    15         this->n = n;
    16         FOR(i, 0, 2 * n - 1) G[i].clear();
    17         clr(mark, 0);
    18     }
    19     //x = xval or y = yval
    20     void add_caluse(int x, int xval, int y, int yval){
    21         x = x * 2 + xval, y = y * 2 + yval;
    22         G[x ^ 1].pb(y), G[y ^ 1].pb(x);
    23     }
    24     bool solve(){
    25         for(int i = 0; i < 2 * n; i += 2) if(!mark[i] && !mark[i + 1]){
    26             c = 0;
    27             if(!dfs(i)){
    28                 while(c > 0) mark[S[--c]] = 0;
    29                 if(!dfs(i + 1)) return 0;
    30             }
    31         }
    32         return 1;
    33     }
    34 };

    相关习题:

    LA 3713 Astronauts

      1 #include <algorithm>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <string>
      5 #include <queue>
      6 #include <map>
      7 #include <set>
      8 #include <stack>
      9 #include <ctime>
     10 #include <cmath>
     11 #include <iostream>
     12 #include <assert.h>
     13 #pragma comment(linker, "/STACK:102400000,102400000")
     14 #define max(a, b) ((a) > (b) ? (a) : (b))
     15 #define min(a, b) ((a) < (b) ? (a) : (b))
     16 #define mp std :: make_pair
     17 #define st first
     18 #define nd second
     19 #define keyn (root->ch[1]->ch[0])
     20 #define lson (u << 1)
     21 #define rson (u << 1 | 1)
     22 #define pii std :: pair<int, int>
     23 #define pll pair<ll, ll>
     24 #define pb push_back
     25 #define type(x) __typeof(x.begin())
     26 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
     27 #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
     28 #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
     29 #define dbg(x) std::cout << x << std::endl
     30 #define dbg2(x, y) std::cout << x << " " << y << std::endl
     31 #define clr(x, i) memset(x, (i), sizeof(x))
     32 #define maximize(x, y) x = max((x), (y))
     33 #define minimize(x, y) x = min((x), (y))
     34 using namespace std;
     35 typedef long long ll;
     36 const int int_inf = 0x3f3f3f3f;
     37 const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
     38 const int INT_INF = (int)((1ll << 31) - 1);
     39 const double double_inf = 1e30;
     40 const double eps = 1e-14;
     41 typedef unsigned long long ul;
     42 typedef unsigned int ui;
     43 inline int readint(){
     44     int x;
     45     scanf("%d", &x);
     46     return x;
     47 }
     48 inline int readstr(char *s){
     49     scanf("%s", s);
     50     return strlen(s);
     51 }
     52 
     53 class cmpt{
     54 public:
     55     bool operator () (const int &x, const int &y) const{
     56         return x > y;
     57     }
     58 };
     59 
     60 int Rand(int x, int o){
     61     //if o set, return [1, x], else return [0, x - 1]
     62     if(!x) return 0;
     63     int tem = (int)((double)rand() / RAND_MAX * x) % x;
     64     return o ? tem + 1 : tem;
     65 }
     66 ll ll_rand(ll x, int o){
     67     if(!x) return 0;
     68     ll tem = (ll)((double)rand() / RAND_MAX * x) % x;
     69     return o ? tem + 1 : tem;
     70 }
     71 
     72 void data_gen(){
     73     srand(time(0));
     74     freopen("in.txt", "w", stdout);
     75     int kases = 10;
     76     printf("%d
    ", kases);
     77     while(kases--){
     78         ll sz = 100000;
     79         printf("%d
    ", sz);
     80         FOR(i, 1, sz){
     81             int o = Rand(2, 0);
     82             int x = Rand(1e9, 1);
     83             int y1 = Rand(1e9, 1), y2 = Rand(1e9, 1);
     84             if(o == 0) printf("%d %d %d %d
    ", x, y1, x, y1);
     85             else printf("%d %d %d %d
    ", y1, x, y2, x);
     86         }
     87     }
     88 }
     89 const int maxn = 1e5 + 10;
     90 int n, m;
     91 ll sum;
     92 int id[maxn];
     93 int age[maxn];
     94 int head[maxn << 1];
     95 struct E{
     96     int to, nex;
     97 }e[maxn << 2];
     98 bool vis[maxn << 1];
     99 int N;
    100 void addE(int x, int y){
    101     e[N].nex = head[x];
    102     e[N].to = y;
    103     head[x] = N++;
    104 }
    105 int stk[maxn], k;
    106 bool dfs(int u){
    107     if(vis[u]) return 1;
    108     vis[u] = 1;
    109     stk[k++] = u;
    110     if(vis[u] && vis[u ^ 1]) return 0;
    111     for(int i = head[u]; ~i; i = e[i].nex){
    112         int v = e[i].to;
    113         if(!dfs(v)) return 0;
    114     }
    115     return 1;
    116 }
    117 
    118 bool solve(int u){
    119     k = 0;
    120     if(dfs(2 * u)) return 1;
    121     while(k) vis[stk[--k]] = 0;
    122     if(dfs(2 * u + 1)) return 1;
    123     return 0;
    124 }
    125 
    126 int main(){
    127     //data_gen(); return 0;
    128     //C(); return 0;
    129     int debug = 0;
    130     if(debug) freopen("in.txt", "r", stdin);
    131     //freopen("out.txt", "w", stdout);
    132     while(~scanf("%d%d", &n, &m) && n){
    133         sum = 0;
    134         FOR(i, 0, n - 1) age[i] = readint(), sum += age[i];
    135         FOR(i, 0, n - 1) id[i] = (ll)age[i] * n >= sum ? 0 : 1;
    136         clr(head, -1), N = 0;
    137         FOR(i, 0, m - 1){
    138             int x = readint() - 1, y = readint() - 1;
    139             //cc[i][0] = x, cc[i][1] = y;
    140             addE(2 * x, 2 * y + 1);
    141             if(id[x] == id[y]) addE(2 * x + 1, 2 * y);
    142             addE(2 * y, 2 * x + 1);
    143             if(id[x] == id[y]) addE(2 * y + 1, 2 * x);
    144         }
    145         int ok = 1;
    146         clr(vis, 0);
    147         FOR(i, 0, n - 1) if(!vis[2 * i] && !vis[2 * i + 1] && !solve(i)){
    148             ok = 0;
    149             break;
    150         }
    151         if(!ok) puts("No solution.");
    152         else FOR(i, 0, n - 1) putchar(!vis[2 * i + 1] ? 'C' : 'A' + id[i]), putchar('
    ');
    153         //int res = verdict();
    154         //printf("verdict :: %s", res ? "ok
    " : "err
    ");
    155     }
    156     return 0;
    157 }
    code:
  • 相关阅读:
    [ solr入门 ] 在schema.xml中加入自己的分词工具
    SQLServer2005获取大数据集时内存不足的解决办法[转]
    java位操作基本教程[转]
    log4j的最佳实践(转)
    [ lucene扩展 ] "Did you mean" feature with Apache Lucene SpellChecker
    java image filters[02]过滤器初探
    PHP serialize 和 JSON 解析与区别
    js 实现 静态缓存页面中访问动态IP下载地址
    smarty section foreach遍历多维数组
    【转】window.open 参数
  • 原文地址:https://www.cnblogs.com/astoninfer/p/5766961.html
Copyright © 2020-2023  润新知