• poj1811 Prime Test


    http://poj.org/problem?id=1811

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 #include <ctime>
      5 using namespace std;
      6 typedef __int64 LL;
      7 const int times = 10;
      8 LL minf, n;
      9 
     10 LL random(LL n){
     11     return (double)rand() / RAND_MAX * n + 0.5;
     12 }
     13 
     14 LL multi(LL a, LL b, LL mod){
     15     a %= mod, b %= mod;
     16     LL ans = 0;
     17     while(b){
     18         if(b & 1) ans += a, ans %= mod;
     19         b >>= 1;
     20         a <<= 1;
     21         a %= mod;
     22     }
     23     return ans;
     24 }
     25 
     26 LL power(LL a, LL p, LL mod){
     27     a %= mod;
     28     LL ans = 1;
     29     while(p){
     30         if(p & 1) ans = multi(ans, a, mod);
     31         p >>= 1;
     32         a = multi(a, a, mod);
     33     }
     34     return ans;
     35 }
     36 
     37 LL gcd(LL a, LL b){
     38     if(!b) return a;
     39     return gcd(b, a % b);
     40 }
     41 
     42 bool witness(LL a, LL n){
     43     LL u = n - 1;
     44     while(!(u & 1)) u >>= 1;
     45     LL t = power(a, u, n);
     46     while(u != n - 1 && t != 1 && t != n - 1){
     47         t = multi(t, t, n);
     48         u <<= 1;
     49     }
     50     return t == n - 1 || u & 1;
     51 }
     52 
     53 bool miller_rabin(LL n){
     54     if(n == 2) return 1;
     55     if(n < 2 || !(n & 1)) return 0;
     56     //test for odd numbers larger than 2
     57     for(int i = 0; i < times; i++){
     58         LL p = random(n - 2) + 1;
     59         if(!witness(p, n)) return 0;
     60     }
     61     return 1;
     62 }
     63 
     64 LL pollard_rho(LL n, LL t){
     65     LL x = random(n - 2) + 1;
     66     LL y = x;
     67     LL i = 1, k = 2, d;
     68     while(1){
     69         ++i;
     70         x = (multi(x, x, n) + t) % n;
     71         d = gcd(y - x, n);
     72         if(1 < d && d < n) return d;
     73         if(x == y) return n;
     74         if(i == k){
     75             y = x;
     76             k <<= 1;
     77         }
     78     }
     79 }
     80 
     81 void fact(LL n, LL t){
     82     if(n == 1) return;
     83     if(miller_rabin(n)){
     84         minf = min(minf, n);
     85         return;
     86     }
     87     LL p = n;
     88     while(p >= n) p = pollard_rho(p, t--);
     89     fact(p, t);
     90     fact(n / p, t);
     91 }
     92 
     93 void solve(){
     94     //if n is prime
     95     if(miller_rabin(n)){
     96         puts("Prime");
     97         return;
     98     }
     99     //try to factorize n
    100     //initialize the minimum non trival factor of n
    101     minf = n;
    102     fact(n, 122);
    103     printf("%I64d
    ", minf);
    104 }
    105 
    106 int main(){
    107     //freopen("in.txt", "r", stdin);
    108     int T;
    109     scanf("%d", &T);
    110     while(T--) scanf("%I64d", &n), solve();
    111     return 0;
    112 }
    View Code
  • 相关阅读:
    ThinkPhp框架分页查询和部分框架知识
    tp框架增删改
    WAMP中mysql服务突然无法启动 解决方法
    thinkphp框架 的 链接数据库和操作数据
    php 全局使用laravel的dd和dump
    给centos装图形界面 widowsx
    marquee标签的使用
    微信公众号开发入门教程
    laravel admin引入css js报错 https
    利用Croppie裁剪图片并后台保存
  • 原文地址:https://www.cnblogs.com/astoninfer/p/4816296.html
Copyright © 2020-2023  润新知