1、库
opencv-python opencv-contrib-python numpy Pillow
openCV可以到官网下载release包,https://opencv.org/releases/
通过pip3也可以安装
2、训练
import numpy as np from PIL import Image import os import cv2 as cv def getImagesAndLabels(path): imagePaths = [os.path.join(path, f) for f in os.listdir(path)] faceSamples = [] ids = [] for imagePath in imagePaths: img_gray = Image.open(imagePath).convert('L') img_numpy = np.array(img_gray, 'uint8') # 图片的命名方式 xx.id.num.ext(xx为任意英文标识,id是标签,同类人脸相同,num一般为该类图片的计数,ext为图片后缀) # 文件名中关键就是id,作为有监督学习,id就是用于分类 id = int(os.path.split(imagePath)[-1].split(".")[1]) print(id, " ", imagePath) faces = face_detector.detectMultiScale(img_numpy) for x, y, w, h in faces: faceSamples.append(img_numpy[y:y + h, x:x + w]) ids.append(id) return faceSamples, ids if __name__ == '__main__': print("Training faces. It will take a few seconds. Wait ...") # 人脸图片路径 face_path = '../face_data/' # opencv-contrib-python包中的函数 recognizer = cv.face.LBPHFaceRecognizer_create() # 载入人脸分类器 face_detector = cv.CascadeClassifier( r"E:BaiduYunDownloadopencvsourcesdatahaarcascadeshaarcascade_frontalface_default.xml") faces, ids = getImagesAndLabels(face_path) recognizer.train(faces, np.array(ids)) # 保存训练信息 recognizer.write('../face_trainer/trainer.yml') print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))
2、人脸识别
import cv2 as cv import os def recognizeImage(imagePath): recognizer = cv.face.LBPHFaceRecognizer_create() recognizer.read('../face_trainer/trainer.yml') haar_path = r"E:BaiduYunDownloadopencvsourcesdatahaarcascadeshaarcascade_frontalface_default.xml" face_detector = cv.CascadeClassifier(haar_path) font = cv.FONT_HERSHEY_SIMPLEX idnum = None # 以训练的时候,按人脸id进行排序 names = ['chen', 'peter', 'hu', 'lin'] print(imagePath) img = cv.imread(imagePath) img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) faces = face_detector.detectMultiScale(img_gray) for x, y, w, h in faces: cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=1) idnum, confidence = recognizer.predict(img_gray[y:y + h, x:x + w]) if confidence < 100: idnum = names[idnum] confidence = "{0}%".format(round(100 - confidence)) else: idnum = "unknown" confidence = "{0}%".format(round(100 - confidence)) cv.putText(img, str(idnum), (x + 5, y - 5), font, 1, (0, 0, 255), 1) cv.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 255, 0), 1) cv.imshow("result", img) while True: if ord('q') == cv.waitKey(0): break cv.destroyAllWindows() if __name__ == '__main__': face_dir = '../face_test/' imagePaths = [os.path.join(face_dir, f) for f in os.listdir(face_dir)] for imagePath in imagePaths: recognizeImage(imagePath)