• python 人脸识别 基于openCV


    1、库

    opencv-python
    opencv-contrib-python
    numpy
    Pillow

    openCV可以到官网下载release包,https://opencv.org/releases/

    通过pip3也可以安装

    2、训练

    import numpy as np
    from PIL import Image
    import os
    import cv2 as cv
    
    
    def getImagesAndLabels(path):
        imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
        faceSamples = []
        ids = []
        for imagePath in imagePaths:
            img_gray = Image.open(imagePath).convert('L')
            img_numpy = np.array(img_gray, 'uint8')
            # 图片的命名方式 xx.id.num.ext(xx为任意英文标识,id是标签,同类人脸相同,num一般为该类图片的计数,ext为图片后缀)
            # 文件名中关键就是id,作为有监督学习,id就是用于分类
            id = int(os.path.split(imagePath)[-1].split(".")[1])
            print(id, " ", imagePath)
            faces = face_detector.detectMultiScale(img_numpy)
            for x, y, w, h in faces:
                faceSamples.append(img_numpy[y:y + h, x:x + w])
                ids.append(id)
        return faceSamples, ids
    
    
    if __name__ == '__main__':
        print("Training faces. It will take a few seconds. Wait ...")
        # 人脸图片路径
        face_path = '../face_data/'
        # opencv-contrib-python包中的函数
        recognizer = cv.face.LBPHFaceRecognizer_create()
        # 载入人脸分类器
        face_detector = cv.CascadeClassifier(
            r"E:BaiduYunDownloadopencvsourcesdatahaarcascadeshaarcascade_frontalface_default.xml")
        faces, ids = getImagesAndLabels(face_path)
        recognizer.train(faces, np.array(ids))
        # 保存训练信息
        recognizer.write('../face_trainer/trainer.yml')
        print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

    2、人脸识别

    import cv2 as cv
    import os
    
    
    def recognizeImage(imagePath):
        recognizer = cv.face.LBPHFaceRecognizer_create()
        recognizer.read('../face_trainer/trainer.yml')
        haar_path = r"E:BaiduYunDownloadopencvsourcesdatahaarcascadeshaarcascade_frontalface_default.xml"
        face_detector = cv.CascadeClassifier(haar_path)
        font = cv.FONT_HERSHEY_SIMPLEX
    
        idnum = None
        # 以训练的时候,按人脸id进行排序
        names = ['chen', 'peter', 'hu', 'lin']
    
        print(imagePath)
        img = cv.imread(imagePath)
        img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
        faces = face_detector.detectMultiScale(img_gray)
        for x, y, w, h in faces:
            cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=1)
            idnum, confidence = recognizer.predict(img_gray[y:y + h, x:x + w])
        if confidence < 100:
            idnum = names[idnum]
            confidence = "{0}%".format(round(100 - confidence))
        else:
            idnum = "unknown"
            confidence = "{0}%".format(round(100 - confidence))
        cv.putText(img, str(idnum), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
        cv.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 255, 0), 1)
        cv.imshow("result", img)
        while True:
            if ord('q') == cv.waitKey(0):
                break
        cv.destroyAllWindows()
    
    
    if __name__ == '__main__':
        face_dir = '../face_test/'
        imagePaths = [os.path.join(face_dir, f) for f in os.listdir(face_dir)]
        for imagePath in imagePaths:
            recognizeImage(imagePath)
  • 相关阅读:
    什么是布局?Android中的布局是怎样的?
    如何优化UI布局?
    Android SDK提供的常用控件Widget “常用控件”“Android原生”
    Android中Adapter类的使用 “Adapter”
    Android自定义属性
    Android中View的绘制流程(专题讲解)
    Android的自定义View及View的绘制流程
    如何创建新控件? “复合控件”“定制控件”
    Android应用程序支持不同屏幕(尺寸、密度)
    支持不同Android设备,包括:不同尺寸屏幕、不同屏幕密度、不同系统设置
  • 原文地址:https://www.cnblogs.com/asker009/p/12555750.html
Copyright © 2020-2023  润新知