应用场景:加权采样,即按照随机事件出现的概率抽样
具体算法:
举例如上,随机事件出现的概率依次是1/2,1/3,1/12,1/12;记随机事件的个数为N,则所有事件概率乘以N后概率为2,4/3,1/3,1/3;
记队列small,large分别存放小于1和大于1的事件下标(例子中small=[0,1],large=[2,3]);
记accept存放第i列对应的事件i矩形的面积百分比;alias存放第i列不是事件i的另外一个事件的标号;
每次从small,large中各取一个,将大的补充到小的之中,小的出队列,再看大的减去补给之后,如果大于1,继续放入large中,如果等于1,则也出去,如果小于1则放入small中。
上例中accept=[2/3,1,1/3,1/3],alias=[1,0,1,1],这里alias[1]的0是默认值,也可默认置为-1避免和事件0冲突;以上部分在源码create_alias_table函数中,时间复杂度是O(N);
随机采样1~N 之间的整数i,决定落在哪一列。随机采样0~1之间的一个概率值,如果小于accept[i],则采样i,如果大于accept[i],则采样alias[i];这一部分源码在alias_sample;
下面附上具体的源码:
import numpy as np
def create_alias_table(area_ratio):
"""
area_ratio[i]代表事件i出现的概率
:param area_ratio: sum(area_ratio)=1
:return: accept,alias
"""
N = len(area_ratio)
accept, alias = [0] * N, [0] * N
small, large = [], []
area_ratio_ = np.array(area_ratio) * N
for i, prob in enumerate(area_ratio_):
if prob < 1.0:
small.append(i)
else:
large.append(i)
while small and large:
small_idx, large_idx = small.pop(), large.pop()
accept[small_idx] = area_ratio_[small_idx]
alias[small_idx] = large_idx
area_ratio_[large_idx] = area_ratio_[large_idx] -
(1 - area_ratio_[small_idx])
if area_ratio_[large_idx] < 1.0:
small.append(large_idx)
else:
large.append(large_idx)
while large:
large_idx = large.pop()
accept[large_idx] = 1
while small:
small_idx = small.pop()
accept[small_idx] = 1
return accept, alias
def alias_sample(accept, alias):
"""
:param accept:
:param alias:
:return: sample index
"""
N = len(accept)
i = int(np.random.random()*N)
r = np.random.random()
if r < accept[i]:
return i
else:
return alias[i]